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GPkit is a Python package for defining and manipulating geometric programming (GP) models.

Our hopes are to bring geometric programming into engineering design processes in a disciplined and collaborative
way, and to encourage research with GPs by providing an extensible object-oriented framework.

GPkit abstracts away solvers so users can work directly with engineering equations and optimization concepts. Sup-
ported solvers are MOSEK and CVXOPT.

Join our mailing list and/or chatroom for support and examples.
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CHAPTER 1

Geometric Programming 101

1.1 What is a GP?

A Geometric Program (GP) is a type of non-linear optimization problem whose objective and constraints
have a particular form.

The decision variables must be strictly positive (non-zero, non-negative) quantities. This is a good fit
for engineering design equations (which are often constructed to have only positive quantities), but any
model with variables of unknown sign (such as forces and velocities without a predefined direction) may
be difficult to express in a GP. Such models might be better expressed as Signomials.

More precisely, GP objectives and inequalities are formed out of monomials and posynomials. In the
context of GP, a monomial is defined as:

𝑓(𝑥) = 𝑐𝑥𝑎1
1 𝑥𝑎2

2 ...𝑥𝑎𝑛
𝑛

where 𝑐 is a positive constant, 𝑥1..𝑛 are decision variables, and 𝑎1..𝑛 are real exponents. For example,
taking 𝑥, 𝑦 and 𝑧 to be positive variables, the expressions

7𝑥 4𝑥𝑦2𝑧
2𝑥

𝑦2𝑧0.3

√︀
2𝑥𝑦

are all monomials. Building on this, a posynomial is defined as a sum of monomials:

𝑔(𝑥) =

𝐾∑︁
𝑘=1

𝑐𝑘𝑥
𝑎1𝑘
1 𝑥𝑎2𝑘

2 ...𝑥𝑎𝑛𝑘
𝑛

For example, the expressions

𝑥2 + 2𝑥𝑦 + 1 7𝑥𝑦 + 0.4(𝑦𝑧)−1/3 0.56 +
𝑥0.7

𝑦𝑧

are all posynomials. Alternatively, monomials can be defined as the subset of posynomials having only
one term. Using 𝑓𝑖 to represent a monomial and 𝑔𝑖 to represent a posynomial, a GP in standard form is

3
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written as:

minimize 𝑔0(𝑥)
subject to 𝑓𝑖(𝑥) = 1, 𝑖 = 1, ....,𝑚

𝑔𝑖(𝑥) ≤ 1, 𝑖 = 1, ...., 𝑛

Boyd et. al. give the following example of a GP in standard form:

minimize 𝑥−1𝑦−1/2𝑧−1 + 2.3𝑥𝑧 + 4𝑥𝑦𝑧
subject to (1/3)𝑥−2𝑦−2 + (4/3)𝑦1/2𝑧−1 ≤ 1

𝑥+ 2𝑦 + 3𝑧 ≤ 1
(1/2)𝑥𝑦 = 1

1.2 Why are GPs special?

Geometric programs have several powerful properties:

1. Unlike most non-linear optimization problems, large GPs can be solved extremely quickly.

2. If there exists an optimal solution to a GP, it is guaranteed to be globally optimal.

3. Modern GP solvers require no initial guesses or tuning of solver parameters.

These properties arise because GPs become convex optimization problems via a logarithmic transforma-
tion. In addition to their mathematical benefits, recent research has shown that many practical problems
can be formulated as GPs or closely approximated as GPs.

1.3 What are Signomials / Signomial Programs?

When the coefficients in a posynomial are allowed to be negative (but the variables stay strictly positive),
that is called a Signomial.

A Signomial Program has signomial constraints. While they cannot be solved as quickly or to global
optima, because they build on the structure of a GP they can often be solved more quickly than a generic
nonlinear program. More information can be found under Signomial Programming.

1.4 Where can I learn more?

To learn more about GPs, refer to the following resources:

• A tutorial on geometric programming, by S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi.

• Convex optimization, by S. Boyd and L. Vandenberghe.

• Geometric Programming for Aircraft Design Optimization, Hoburg, Abbeel 2014

4 Chapter 1. Geometric Programming 101
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CHAPTER 2

Installation

1. If you are on Mac or Windows, we recommend installing Anaconda. Alternatively, install pip and
create a virtual environment.

2. (optional) Install the MOSEK 9 solver with pip install Mosek, then a license as described
below

3. (optional) Install the MOSEK 8 solver as described below

4. Run pip install gpkit in the appropriate terminal or command prompt.

5. Open a Python prompt and run import gpkit to finish installation and run unit tests.

If you encounter any bugs please email gpkit@mit.edu or raise a GitHub issue.

2.1 Installing MOSEK 8

GPkit interfaces with two off the shelf solvers: cvxopt, and MOSEK (versions 8 and 9). Cvxopt is open
source and installed by default; MOSEK requires a commercial licence or (free) academic license. In
MOSEK version 8 GPkit uses the command-line interface mskexpopt solver, while in MOSEK 9 it
uses the more active exponential-cone interface (and hence supports Choice Variables).

Mac OS X

• If which gcc does not return anything, install the Apple Command Line Tools.

• Download MOSEK 8, then:

– Move the mosek folder to your home directory

– Follow these steps for Mac.

• Request an academic license file and put it in ~/mosek/

Linux

• Download MOSEK 8, then:

5
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– Move the mosek folder to your home directory

– Follow these steps for Linux.

• Request an academic license file and put it in ~/mosek/

Windows

• Make sure gcc is on your system path.

– To do this, type gcc into a command prompt.

– If you get executable not found, then install the 64-bit version (x86_64 installer
architecture dropdown option) with GCC version 6.4.0 or older of mingw.

– In an Anaconda command prompt (or equivalent), run cd C:\Program
Files\mingw-w64\x86_64-6.4.0-posix-seh-rt_v5-rev0\ (or whatever
corresponds to the correct installation directory; note that if mingw is in Program
Files (x86) instead of Program Files you’ve installed the 32-bit version by
mistake)

– Run mingw-w64 to add it to your executable path. For step 3 of the install process
you’ll need to run pip install gpkit from this prompt.

• Download MOSEK 8, then:

– Follow these steps for Windows.

• Request an academic license file and put it in C:\Users\(your_username)\mosek\

2.2 Debugging your installation

You may need to rebuild GPkit if any of the following occur:

• You install MOSEK after installing GPkit

• You see Could not load settings file. when importing GPkit, or

• Could not load MOSEK library: ImportError('expopt.so not
found.')

To rebuild GPkit run python -c "from gpkit.build import rebuild; rebuild()".

If that doesn’t solve your issue then try the following:

• pip uninstall gpkit

• pip install --no-cache-dir --no-deps gpkit

• python -c "import gpkit.tests; gpkit.tests.run()"

• If any tests fail, please email gpkit@mit.edu or raise a GitHub issue.

2.3 Bleeding-edge installations

Active developers may wish to install the latest GPkit directly from Github. To do so,

1. pip uninstall gpkit to uninstall your existing GPkit.

2. git clone https://github.com/convexengineering/gpkit.git

3. pip install -e gpkit to install that directory as your environment-wide GPkit.
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4. cd ..; python -c "import gpkit.tests; gpkit.tests.run()" to test your in-
stallation from a non-local directory.

2.3. Bleeding-edge installations 7
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CHAPTER 3

Getting Started

GPkit is a Python package, so we assume basic familiarity with Python: if you’re new to Python we
recommend you take a look at Learn Python.

Otherwise, install GPkit and import away:

from gpkit import Variable, VectorVariable, Model
from gpkit.nomials import Monomial, Posynomial, PosynomialInequality

3.1 Declaring Variables

Instances of the Variable class represent scalar variables. They create a VarKey to store the variable’s
name, units, a description, and value (if the Variable is to be held constant), as well as other metadata.

3.1.1 Free Variables

# Declare a variable, x
x = Variable("x")

# Declare a variable, y, with units of meters
y = Variable("y", "m")

# Declare a variable, z, with units of meters, and a description
z = Variable("z", "m", "A variable called z with units of meters")

3.1.2 Fixed Variables

To declare a variable with a constant value, use the Variable class, as above, but put a number before
the units:

9
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rho = Variable("rho", 1.225, "kg/m^3", "Density of air at sea level")

In the example above, the key name "\rho" is for LaTeX printing (described later). The unit and
description arguments are optional.

#Declare pi equal to 3.14
pi = Variable("pi", 3.14159, "-", constant=True)

3.1.3 Vector Variables

Vector variables are represented by the VectorVariable class. The first argument is the length of the
vector. All other inputs follow those of the Variable class.

# Declare a 3-element vector variable "x" with units of "m"
x = VectorVariable(3, "x", "m", "Cube corner coordinates")
x_min = VectorVariable(3, "x", [1, 2, 3], "m", "Cube corner minimum")

3.2 Creating Monomials and Posynomials

Monomial and posynomial expressions can be created using mathematical operations on variables.

# create a Monomial term xy^2/z
x = Variable("x")
y = Variable("y")
z = Variable("z")
m = x * y**2 / z
assert isinstance(m, Monomial)

# create a Posynomial expression x + xy^2
x = Variable("x")
y = Variable("y")
p = x + x * y**2
assert isinstance(p, Posynomial)

3.3 Declaring Constraints

Constraint objects represent constraints of the form Monomial >= Posynomial or Monomial
== Monomial (which are the forms required for GP-compatibility).

Note that constraints must be formed using <=, >=, or == operators, not < or >.

# consider a block with dimensions x, y, z less than 1
# constrain surface area less than 1.0 m^2
x = Variable("x", "m")
y = Variable("y", "m")
z = Variable("z", "m")
S = Variable("S", 1.0, "m^2")
c = (2*x*y + 2*x*z + 2*y*z <= S)
assert isinstance(c, PosynomialInequality)

10 Chapter 3. Getting Started
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3.4 Formulating a Model

The Model class represents an optimization problem. To create one, pass an objective and list of Con-
straints.

By convention, the objective is the function to be minimized. If you wish to maximize a function, take
its reciprocal. For example, the code below creates an objective which, when minimized, will maximize
x*y*z.

x = Variable("x")
y = Variable("y")
z = Variable("z")
S = 200
objective = 1/(x*y*z)
constraints = [2*x*y + 2*x*z + 2*y*z <= S,

x >= 2*y]
m = Model(objective, constraints)

3.5 Solving the Model

When solving the model you can change the level of information that gets printed to the screen with the
verbosity setting. A verbosity of 1 (the default) prints warnings and timing; a verbosity of 2 prints
solver output, and a verbosity of 0 prints nothing.

sol = m.solve(verbosity=0)

3.6 Printing Results

The solution object can represent itself as a table:

print(sol.table())

Cost
----
15.59 [1/m**3]

Free Variables
--------------
x : 0.5774 [m]
y : 0.2887 [m]
z : 0.3849 [m]

Constants
---------
S : 1 [m**2]

Sensitivities
-------------
S : -1.5

We can also print the optimal value and solved variables individually.

3.4. Formulating a Model 11
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print("The optimal value is %.4g." % sol["cost"])

The optimal value is 15.5884619886.
The x dimension is 0.5774 meter.
The y dimension is 0.2887 meter.

3.7 Sensitivities and Dual Variables

When a GP is solved, the solver returns not just the optimal value for the problem’s variables (known as
the “primal solution”) but also the effect that relaxing each constraint would have on the overall objective
(the “dual solution”).

From the dual solution GPkit computes the sensitivities for every fixed variable in the problem. This can
be quite useful for seeing which constraints are most crucial, and prioritizing remodeling and assumption-
checking.

3.7.1 Using Variable Sensitivities

Fixed variable sensitivities can be accessed from a SolutionArray’s
["sensitivities"]["variables"] dict, as in this example:

x = Variable("x")
x_min = Variable("x_{min}", 2)
sol = Model(x, [x_min <= x]).solve(verbosity=0)
sens_x_min = sol["sensitivities"]["variables"][x_min]

These sensitivities are actually log derivatives ( 𝑑log(𝑦)𝑑log(𝑥) ); whereas a regular derivative is a tangent line,
these are tangent monomials, so the 1 above indicates that x_min has a linear relation with the objective.
This is confirmed by a further example:

x = Variable("x")
x_squared_min = Variable("x^2_{min}", 2)
sol = Model(x, [x_squared_min <= x**2]).solve(verbosity=0)
sens_x_min = sol["sensitivities"]["variables"][x_squared_min]

12 Chapter 3. Getting Started



CHAPTER 4

Debugging Models

A number of errors and warnings may be raised when attempting to solve a model. A model may be primal
infeasible: there is no possible solution that satisfies all constraints. A model may be dual infeasible: the
optimal value of one or more variables is 0 or infinity (negative and positive infinity in logspace).

For a GP model that does not solve, solvers may be able to prove its primal or dual infeasibility, or may
return an unknown status.

GPkit contains several tools for diagnosing which constraints and variables might be causing infeasibility.
The first thing to do with a model m that won’t solve is to run m.debug(), which will search for changes
that would make the model feasible:

"Debug examples"
from gpkit import Variable, Model, units

x = Variable("x", "ft")
x_min = Variable("x_min", 2, "ft")
x_max = Variable("x_max", 1, "ft")
y = Variable("y", "volts")

m = Model(x/y, [x <= x_max, x >= x_min])
m.debug()

print("# Now let's try a model unsolvable with relaxed constants\n")

m2 = Model(x, [x <= units("inch"), x >= units("yard")])
m2.debug()

print("# And one that's only unbounded\n")

# the value of x_min was used up in the previous model!
x_min = Variable("x_min", 2, "ft")
m3 = Model(x/y, [x >= x_min])
m3.debug()

x_min = Variable("x_min", 2, "ft")
(continues on next page)

13
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(continued from previous page)

m4 = Model(x, [x >= x_min])
m4.debug()

<DEBUG> Model is feasible with these modifications:

Arbitrarily Bounded Variables
-----------------------------

value near upper bound of 1e+30: y
sensitive to upper bound of 1e+30: y

Relaxed Constants
-----------------
x_min [ft]: relaxed from 2 to 1

# Now let's try a model unsolvable with relaxed constants

<DEBUG> Model is not feasible with relaxed constants and bounded variables.
<DEBUG> Model is feasible with these modifications:

Relaxed Constraints
-------------------

1: 3500% relaxed, from x [ft] >= 1 [yd]
to 36·x [ft] >= 1 [yd]

# And one that's only unbounded

<DEBUG> Model is feasible with these modifications:

Arbitrarily Bounded Variables
-----------------------------

value near upper bound of 1e+30: y
sensitive to upper bound of 1e+30: y

<DEBUG> Model seems feasible without modification, or only needs relaxations
→˓of less than 1%. Check the returned solution for details.

Note that certain modeling errors (such as omitting or forgetting a constraint) may be difficult to diagnose
from this output.

4.1 Potential errors and warnings

• RuntimeWarning: final status of solver 'mosek' was 'DUAL_INFEAS_CER', not 'optimal’

– The solver found a certificate of dual infeasibility: the optimal value of one or more vari-
ables is 0 or infinity. See Dual Infeasibility below for debugging advice.

• RuntimeWarning: final status of solver 'mosek' was 'PRIM_INFEAS_CER', not 'optimal’

– The solver found a certificate of primal infeasibility: no possible solution satisfies all con-
straints. See Primal Infeasibility below for debugging advice.

• RuntimeWarning: final status of solver 'cvxopt' was 'unknown', not 'optimal’ or RuntimeWarning: final status of solver 'mosek' was ‘UNKNOWN’, not 'optimal’.

14 Chapter 4. Debugging Models
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– The solver could not solve the model or find a certificate of infeasibility. This may indicate a
dual infeasible model, a primal infeasible model, or other numerical issues. Try debugging
with the techniques in Dual and Primal Infeasibility below.

• RuntimeWarning: Primal solution violates constraint: 1.0000149786 is greater than 1

– this warning indicates that the solver-returned solution violates a constraint of the model,
likely because the solver’s tolerance for a final solution exceeds GPkit’s tolerance during
solution checking. This is sometimes seen in dual infeasible models, see Dual Infeasibility
below. If you run into this, please note on this GitHub issue your solver and operating
system.

• RuntimeWarning: Dual cost nan does not match primal cost 1.00122315152

– Similarly to the above, this warning may be seen in dual infeasible models, see Dual Infea-
sibility below.

4.2 Dual Infeasibility

In some cases a model will not solve because the optimal value of one or more variables is 0 or infinity
(negative or positive infinity in logspace). Such a problem is dual infeasible because the GP’s dual prob-
lem, which determines the optimal values of the sensitivites, does not have any feasible solution. If the
solver can prove that the dual is infeasible, it will return a dual infeasibility certificate. Otherwise, it may
finish with a solution status of unknown.

gpkit.constraints.bounded.Bounded is a simple tool that can be used to detect unbounded
variables and get dual infeasible models to solve by adding extremely large upper bounds and extremely
small lower bounds to all variables in a ConstraintSet.

When a model with a Bounded ConstraintSet is solved, it checks whether any variables slid off to the
bounds, notes this in the solution dictionary and prints a warning (if verbosity is greater than 0).

For example, Mosek returns DUAL_INFEAS_CER when attempting to solve the following model:

"Demonstrate a trivial unbounded variable"
from gpkit import Variable, Model
from gpkit.constraints.bounded import Bounded

x = Variable("x")

constraints = [x >= 1]

m = Model(1/x, constraints) # MOSEK returns DUAL_INFEAS_CER on .solve()
m = Model(1/x, Bounded(constraints))
# by default, prints bounds warning during solve
sol = m.solve(verbosity=0)
print(sol.summary())
# but they can also be accessed from the solution:
assert (sol["boundedness"]["value near upper bound of 1e+30"]

== sol["boundedness"]["sensitive to upper bound of 1e+30"])

Upon viewing the printed output,

(continues on next page)
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Cost
(1e-30) 1/x

(1e-30)

Model
x 1e+30

~~~~~~~~
WARNINGS
~~~~~~~~
Arbitrarily Bounded Variables
-----------------------------

value near upper bound of 1e+30: x
sensitive to upper bound of 1e+30: x
~~~~~~~~

Free Variables
--------------
x : 1e+30

The problem, unsurprisingly, is that the cost 1/x has no lower bound because x has no upper bound.

For details read the Bounded docstring.

4.3 Primal Infeasibility

A model is primal infeasible when there is no possible solution that satisfies all constraints. A simple
example is presented below.

"A simple primal infeasible example"
from gpkit import Variable, Model

x = Variable("x")
y = Variable("y")

m = Model(x*y, [
x >= 1,
y >= 2,
x*y >= 0.5,
x*y <= 1.5

])

# raises UnknownInfeasible on cvxopt, PrimalInfeasible on mosek
# m.solve()

It is not possible for x*y to be less than 1.5 while x is greater than 1 and y is greater than 2.

A common bug in large models that use substitutions is to substitute overly constraining values in
for variables that make the model primal infeasible. An example of this is given below.
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"Another simple primal infeasible example"
from gpkit import Variable, Model

x = Variable("x")
y = Variable("y", 2)

constraints = [
x >= 1,
0.5 <= x*y,
x*y <= 1.5
]

objective = x*y
m = Model(objective, constraints)

# raises UnknownInfeasible on cvxopt and PrimalInfeasible on mosek
# m.solve()

Since y is now set to 2 and x can be no less than 1, it is again impossible for x*y to be less than 1.5 and
the model is primal infeasible. If y was instead set to 1, the model would be feasible and the cost would
be 1.

4.3.1 Relaxation

If you suspect your model is primal infeasible, you can find the nearest primal feasible version of it by
relaxing constraints: either relaxing all constraints by the smallest number possible (that is, dividing the
less-than side of every constraint by the same number), relaxing each constraint by its own number and
minimizing the product of those numbers, or changing each constant by the smallest total percentage
possible.

"Relaxation examples"

from gpkit import Variable, Model

x = Variable("x")
x_min = Variable("x_min", 2)
x_max = Variable("x_max", 1)
m = Model(x, [x <= x_max, x >= x_min])
print("Original model")
print("==============")
print(m)
print("")
# m.solve() # raises a RuntimeWarning!

print("With constraints relaxed equally")
print("================================")

from gpkit.constraints.relax import ConstraintsRelaxedEqually

allrelaxed = ConstraintsRelaxedEqually(m)
mr1 = Model(allrelaxed.relaxvar, allrelaxed)
print(mr1)
print(mr1.solve(verbosity=0).table()) # solves with an x of 1.414
from gpkit.breakdowns import Breakdowns
Breakdowns(mr1.solution).trace("cost")

(continues on next page)
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print("")

print("With constraints relaxed individually")
print("=====================================")

from gpkit.constraints.relax import ConstraintsRelaxed

constraintsrelaxed = ConstraintsRelaxed(m)
mr2 = Model(constraintsrelaxed.relaxvars.prod() * m.cost**0.01,

# add a bit of the original cost in
constraintsrelaxed)

print(mr2)
print(mr2.solve(verbosity=0).table()) # solves with an x of 1.0
print("")

print("With constants relaxed individually")
print("===================================")

from gpkit.constraints.relax import ConstantsRelaxed

constantsrelaxed = ConstantsRelaxed(m)
mr3 = Model(constantsrelaxed.relaxvars.prod() * m.cost**0.01,

# add a bit of the original cost in
constantsrelaxed)

print(mr3)
print(mr3.solve(verbosity=0).table()) # brings x_min down to 1.0
print("")

Original model
==============

Cost Function
-------------
x

Constraints
-----------
x x_max
x x_min

With constraints relaxed equally
================================

Cost Function
-------------
C

Constraints
-----------
"minimum relaxation":

C 1
"relaxed constraints":

x C·x_max
x_min C·x

(continues on next page)
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(continued from previous page)

Cost
(1.41) x_min

(2, fixed)

x C·x_max

x_max = 1
Model

x_min = 2

x_min C·x

~~~~~~~~
WARNINGS
~~~~~~~~
Relaxed Constraints
-------------------
All constraints relaxed by 42%
~~~~~~~~

Free Variables
--------------
x : 1.414

| Relax
C : 1.414

Fixed Variables
---------------
x_max : 1
x_min : 2

Variable Sensitivities
----------------------
x_max : -0.5
x_min : +0.5

Most Sensitive Constraints
--------------------------
+0.5 : x C·x_max
+0.5 : x_min C·x

C (1.41)
breaks down into:

(continues on next page)
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(continued from previous page)

C (1.41)
which in: x C·x_max (sensitivity +0.5)
{ through a factor of 1/x_max (1, fixed) }
breaks down into:
x (1.41)
which in: x_min C·x (sensitivity +0.5)
breaks down into:
{ through a factor of 1/C (0.707) }
x_min (2, fixed)

With constraints relaxed individually
=====================================

Cost Function
-------------
C[:].prod()·x^0.01

Constraints
-----------
"minimum relaxation":

C[:] 1
"relaxed constraints":

x C[0]·x_max
x_min C[1]·x

Cost
(2) 1/x

(1)

x_min = 2

x_min C[1]·x
Model

x C[0]·x_max

x_max = 1

~~~~~~~~
WARNINGS
~~~~~~~~
Relaxed Constraints
-------------------

1: 100% relaxed, from x >= x_min
to x_min <= 2·x

(continues on next page)
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(continued from previous page)

~~~~~~~~

Free Variables
--------------
x : 1

| Relax1
C : [ 1 2 ]

Fixed Variables
---------------
x_max : 1
x_min : 2

Variable Sensitivities
----------------------
x_min : +1
x_max : -0.99

Most Sensitive Constraints
--------------------------

+1 : x_min C[1]·x
+0.99 : x C[0]·x_max
+0.01 : C[0] 1

With constants relaxed individually
===================================

Cost Function
-------------
[Relax2.x_max, Relax2.x_min].prod()·x^0.01

Constraints
-----------
Relax2
"original constraints":

x x_max
x x_min

"relaxation constraints":
"x_max":
Relax2.x_max 1
x_max OriginalValues.x_max/Relax2.x_max
x_max OriginalValues.x_max·Relax2.x_max

"x_min":
Relax2.x_min 1
x_min OriginalValues.x_min/Relax2.x_min
x_min OriginalValues.x_min·Relax2.x_min

Cost
(2) 1/Relax2.x_min

(0.5)

(continues on next page)
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x x_min

x_min = 1

Modelx_min OriginalValues.x_min/Relax2.x_min

x x_max

x_max = 1

x_max OriginalValues.x_max·Relax2.x_max

~~~~~~~~
WARNINGS
~~~~~~~~
Relaxed Constants
-----------------
x_min: relaxed from 2 to 1

~~~~~~~~

Free Variables
--------------

x : 1
x_max : 1
x_min : 1

| Relax2
x_max : 1
x_min : 2

Fixed Variables
---------------

| Relax2.OriginalValues
x_max : 1
x_min : 2

Variable Sensitivities
----------------------
x_min : +1
x_max : -0.99

Most Sensitive Constraints
--------------------------

+1 : x x_min
+1 : x_min OriginalValues.x_min/Relax2.x_min

+0.99 : x x_max
+0.99 : x_max OriginalValues.x_max·Relax2.x_max

(continues on next page)
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CHAPTER 5

Visualization and Interaction

Code in this section uses the CE solar model except where noted otherwise.

5.1 Model and Variable Breakdowns

Model breakdowns (similar to the sankey diagrams below) show the hierarchy of a model scaled by the
sensitivity of its constraints and fixed variables.

Variable breakdowns show how a variable “breaks down” into smaller expressions. For example if the
constraint x_total >= x1 + x2 is tight (that is, has a sensitivity greater than zero, indicating that the
right hand side is “pushing” against the left), then x_total can be said to “break down” into x1 and x2,
each of which may have their own breakdowns. If multiple constraints break down a variable, the most
sensitive one is chosen; if none do, than constraints such as 1 >= x1/x_total + x2/x_total
will be rearranged in an attempt to create a valid breakdown constraint like that above.

"An example to show off Breakdowns"
import os
import pickle
import pint
from packaging import version
from gpkit.breakdowns import Breakdowns

if version.parse(pint.__version__) >= version.parse("0.9"):
# the code to create solar.p is in ./breakdowns/solartest.py
filepath = os.path.dirname(os.path.realpath(__file__)) + os.sep + "solar.

→˓p"
sol = pickle.load(open(filepath, "rb"))
bds = Breakdowns(sol)

print("Cost breakdown (as seen in solution tables)")
print("==============")
bds.plot("cost")

(continues on next page)
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print("Variable breakdowns (note the two methods of access)")
print("===================")
varkey, = sol["variables"].keymap[("Mission.FlightSegment.AircraftPerf"

".AircraftDrag.Poper")]
bds.plot(varkey)
bds.plot("AircraftPerf.AircraftDrag.MotorPerf.Q")

print("Combining the two above by increasing maxwidth")
print("----------------------------------------------")
bds.plot("AircraftPerf.AircraftDrag.Poper", maxwidth=105)

print("Model sensitivity breakdowns (note the two methods of access)")
print("============================")
bds.plot("model sensitivities")
bds.plot("Aircraft")

print("Exhaustive variable breakdown traces (and configuration arguments)
→˓")

print("====================================")
# often useful as a reference point when reading traces
bds.plot("AircraftPerf.AircraftDrag.Poper", height=12)
# includes factors, can be useful for reading traces as well
bds.plot("AircraftPerf.AircraftDrag.Poper", showlegend=True)
print("\nPermissivity = 2 (the default)")
print("----------------")
bds.trace("AircraftPerf.AircraftDrag.Poper")
print("\nPermissivity = 1 (stops at Pelec = v·i)")
print("----------------")
bds.trace("AircraftPerf.AircraftDrag.Poper", permissivity=1)

# you can also produce Plotly treemaps/icicle plots of your breakdowns
fig = bds.treemap("model sensitivities", returnfig=True)
fig = bds.icicle("cost", returnfig=True)
# uncommenting any of the below makes and shows the plot directly
# bds.icicle("model sensitivities")
# bds.treemap("cost")

Cost breakdown (as seen in solution tables)
==============

Battery.W Battery.E
(370lbf) (165,913kJ)

Cost
(699lbf) Wtotal

(699lbf)
Wing.BoxSpar.W

Wing.W (96.1lbf)
(139lbf) Wing.WingSecondStruct.W

Motor.W

(continues on next page)
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SolarCells.W
Empennage.W
Wavn
[6 terms]

Variable breakdowns (note the two methods of access)
===================

MotorPerf.Q
AircraftPerf.AircraftDrag.PoperMotorPerf.Pelec MotorPerf.i (4.8N·m)

(3,194W) (0.685kW) (36.8A)

i0
(4.5A, fixed)

Pavn
Ppay

AircraftPerf.AircraftDrag.MotorPerf.Q
(4.8N·m) ..ActuatorProp.CP

(0.00291)

Combining the two above by increasing maxwidth
----------------------------------------------

MotorPerf.Q
→˓ActuatorProp.CP
AircraftPerf.AircraftDrag.PoperMotorPerf.Pelec MotorPerf.i (4.8N·m) (0.
→˓00291)

(3,194W) (0.685kW) (36.8A)

i0
(4.5A, fixed)

Pavn
Ppay

Model sensitivity breakdowns (note the two methods of access)
============================

(continues on next page)
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ActuatorProp

AircraftPerf AircraftDrag MotorPerf

Mission FlightSegment [17 terms]

FlightState
Model GustL

SteadyLevelFlight
[49 terms]

Climb

Aircraft

g = 9.81m/s2

etadischarge = 0.98

W E·minSOC/hbatt/etaRTE/etapack·g
etaRTE = 0.95

Battery etapack = 0.85
hbatt = 350W·hr/kg
minSOC = 1.03

Aircraft
Wing

Wtotal/mfac Fuselage.W[0,0] + Fuselage.W[1,0] + Fuselage.W[2,0]
→˓...

mfac = 1.05

Empennage
[23 terms]

Exhaustive variable breakdown traces (and configuration arguments)
====================================

AircraftPerf.AircraftDrag.PoperMotorPerf.Pelec MotorPerf.i MotorPerf.Q
(3,194W) (0.685kW) (36.8A) (4.8N·m)

i0
(continues on next page)
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Pavn

DCBAActuatorProp.CP
AircraftPerf.AircraftDrag.PoperHGFE (0.00291)

(3,194W) J

i0 (4.5A, fixed)

Pavn (200W, fixed)
Ppay (100W, fixed)

A 4.53e-05·FlightState.rho·ActuatorProp.omega2·Propeller.R5 ×1,653N·m
→˓ [free factor]
B ActuatorProp.Q = 4.8N·m
C MotorPerf.Q = 4.8N·m
D Kv ×64.2rpm/V
→˓ [free factor]
E MotorPerf.i = 36.8A
F MotorPerf.v ×18.6V
→˓ [free factor]
G MotorPerf.Pelec = 0.685kW
H Nprop ×4, fixed
J mpower ×1.05, fixed

Permissivity = 2 (the default)
----------------

AircraftPerf.AircraftDrag.Poper (3,194W)
which in: Poper/mpower Pavn + Ppay + Pelec·Nprop (sensitivity +5.6)
{ through a factor of AircraftPerf.AircraftDrag.mpower (1.05, fixed) }
breaks down into 3 monomials:

1) forming 90% of the RHS and 90% of the total:
{ through a factor of Nprop (4, fixed) }
AircraftPerf.AircraftDrag.MotorPerf.Pelec (0.685kW)
which in: Pelec = v·i (sensitivity -5.1)
breaks down into:
{ through a factor of AircraftPerf.AircraftDrag.MotorPerf.v (18.

→˓6V) }
AircraftPerf.AircraftDrag.MotorPerf.i (36.8A)
which in: i Q·Kv + i0 (sensitivity +5.4)
breaks down into 2 monomials:
1) forming 87% of the RHS and 79% of the total:
{ through a factor of Kv (64.2rpm/V) }
AircraftPerf.AircraftDrag.MotorPerf.Q (4.8N·m)
which in: Q = Q (sensitivity -4.7)
breaks down into:
AircraftPerf.AircraftDrag.ActuatorProp.Q (4.8N·m)
which in: CP Q·omega/(0.5·rho·(omega·R)3·𝜋·R2)

→˓(sensitivity +4.7) (continues on next page)
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{ through a factor of 4.53e-05·FlightState.
→˓rho·AircraftPerf.AircraftDrag.ActuatorProp.omega2·Propeller.R5 (1,653N·m) }

breaks down into:
AircraftPerf.AircraftDrag.ActuatorProp.CP (0.00291)

2) forming 12% of the RHS and 11% of the total:
i0 (4.5A, fixed)

2) forming 6% of the RHS and 6% of the total:
AircraftPerf.AircraftDrag.Pavn (200W, fixed)

3) forming 3% of the RHS and 3% of the total:
AircraftPerf.AircraftDrag.Ppay (100W, fixed)

Permissivity = 1 (stops at Pelec = v·i)
----------------

AircraftPerf.AircraftDrag.Poper (3,194W)
which in: Poper/mpower Pavn + Ppay + Pelec·Nprop (sensitivity +5.6)
{ through a factor of AircraftPerf.AircraftDrag.mpower (1.05, fixed) }
breaks down into 3 monomials:

1) forming 90% of the RHS and 90% of the total:
{ through a factor of Nprop (4, fixed) }
AircraftPerf.AircraftDrag.MotorPerf.Pelec (0.685kW)
which in: Pelec = v·i (sensitivity -5.1)
breaks down into:
AircraftPerf.AircraftDrag.MotorPerf.i·AircraftPerf.AircraftDrag.

→˓MotorPerf.v (685A·V)
2) forming 6% of the RHS and 6% of the total:
AircraftPerf.AircraftDrag.Pavn (200W, fixed)

3) forming 3% of the RHS and 3% of the total:
AircraftPerf.AircraftDrag.Ppay (100W, fixed)

If permissivity is greater than 1, the breakdown will always proceed if a breakdown variable is available
in the monomial, and will choose the most sensitive one if multiple are available. If permissivity is 1,
breakdowns will stop when there are multiple breakdown variables multiplying each other. If permissivity
is 0, breakdowns will stop when any free variables multiply each other. If permissivity is between 0 and
1, it will follow the behavior for 1 if the monomial represents a fraction of the total greater than 1 -
permissivity, and the behavior for 0 otherwise.

5.2 Model Hierarchy Treemaps

import plotly
from gpkit.interactive.plotting import treemap
from solar.solar import *
Vehicle = Aircraft(Npod=3, sp=True)
M = Mission(Vehicle, latitude=[20])
fig = treemap(M)
plotly.offline.plot(fig, filename="treemap.html")

and, using sizing and counting by constraints instead of variables (the default):

fig = treemap(M, itemize="constraints", sizebycount=True)
plotly.offline.plot(fig, filename="sizedtreemap.html")
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5.3 Variable Reference Plots

from solar.solar import *
Vehicle = Aircraft(Npod=3, sp=True)
M = Mission(Vehicle, latitude=[20])
M.cost = M[M.aircraft.Wtotal]
sol = M.localsolve()

from gpkit.interactive.references import referencesplot
referencesplot(M, openimmediately=True)

Running the code above will produce two files in your working directory: referencesplot.html
and referencesplot.json, and (unless you specify openimmediately=False) open the for-
mer in your web browser, showing you something like this:

Click to see the interactive version of this plot.

When a model’s name is hovered over its connections are highlighted, showing in red the other models it
imports variables from to use in its constraints and in blue the models that import variables from it.

By default connections are shown with equal width (“Unweighted”). When “Global Sensitivities” is
selected, connection width is proportional to the sensitivity of all variables in that connection to the im-
porting model, corresponding exactly to how much the model’s cost would decrease if those variables
were relaxed in only that importing model. This can give a sense of which connections are vital to the
overall model. When “Normalized Sensitivities” is selected, that global weight is divided by the weight
of all variables in the importing model, giving a sense of which connections are vital to each subsystem.

5.4 Sensitivity Diagrams

5.4.1 Requirements

• Jupyter Notebook

• ipysankeywidget

– Note that you’ll need to activate these widgets on Jupyter by runnning

* jupyter nbextension enable --py --sys-prefix
widgetsnbextension

* jupyter nbextension enable --py --sys-prefix
ipysankeywidget

5.4.2 Example

from solar.solar import *
Vehicle = Aircraft(Npod=3, sp=True)
M = Mission(Vehicle, latitude=[20])
M.cost = M[M.aircraft.Wtotal]
sol = M.localsolve()

from gpkit.interactive.sankey import Sankey

Once the code above has been run in a Jupyter notebook, the code below will create interactive hierarchies
of your model’s sensitivities, like so:
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5.4.3 Explanation

Sankey diagrams can be used to visualize sensitivity structure in a model. A blue flow from a constraint
to its parent indicates that the sensitivity of the chosen variable (or of making the constraint easier, if no
variable is given) is negative; that is, the objective of the overall model would improve if that variable’s
value were increased in that constraint alone. Red indicates a positive sensitivity: the objective and the
the constraint ‘want’ that variable’s value decreased. Gray flows indicate a sensitivity whose absolute
value is below 1e-2, i.e. a constraint that is inactive for that variable. Where equal red and blue flows
meet, they cancel each other out to gray.

5.4.4 Usage

Variables

In a Sankey diagram of a variable, the variable is on the right with its final sensitivity; to the left of it are
all constraints that variable is in.

Free

Free variables have an overall sensitivity of 0, so this visualization shows how the various pressures on
that variable in all its constraints cancel each other out; this can get quite complex, as in this diagram of
the pressures on wingspan (right-click and open in a new tab to see it more clearly):

Sankey(sol, M, "SolarMission").diagram(M.aircraft.wing.planform.b,
→˓showconstraints=False)

Gray lines in this diagram indicate constraints or constraint sets that the variable is in but which have no
net sensitivity to it. Note that the showconstraints argument can be used to hide constraints if you
wish to see more of the model hierarchy with the same number of links.

Variable in the cost function, have a “[cost function]” node on the diagram like so:

Sankey(sol, M, "SolarMission").diagram(M.aircraft.Wtotal)
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Fixed

Fixed variables can have a nonzero overall sensitivity. Sankey diagrams can how that sensitivity comes
together:

Sankey(sol, M, "SolarMission").diagram(M.variables_byname("tmin")[0],
→˓left=100)

Note that the left= syntax is used to reduce the left margin in this plot. Similar arguments exist for the
right, top, and bottom margins: all arguments are in pixels.

The only difference between free and fixed variables from this perspective is their final sensitivity; for ex-
ample Nprop, the number of propellers on the plane, has almost zero sensitivity, much like the wingspan
b, above.

Sankey(sol, M, "SolarMission").diagram(M["Nprop"])
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Models

When created without a variable, the diagram shows the sensitivity of every named model to becoming
locally easier. Because derivatives are additive, these sensitivities are too: a model’s sensitivity is equal to
the sum of its constraints’ sensitivities and the magnitude of its fixed-variable sensitivities. Gray lines in
this diagram indicate models without any tight constraints or sensitive fixed variables.

Sankey(sol, M, "SolarMission").diagram(maxlinks=30, showconstraints=False,
→˓height=700)

Note that in addition to the showconstraints syntax introduced above, this uses two additional ar-
guments you may find useful when visualizing large models: height sets the height of the diagram in
pixels (similarly for width), while maxlinks increases the maximum number of links (default 20),
making a more detailed plot. Plot construction time goes approximately as the square of the number of
links, so be careful when increasing maxlinks!

With some different arguments, the model looks like this:

Sankey(sol, M).diagram(minsenss=1, maxlinks=30, left=130,
→˓showconstraints=False)

The only piece of unexplained syntax in this is minsenss. Perhaps unsurprisingly, this just limits the
links shown to only those whose sensitivity exceeds that minimum; it’s quite useful for exploring a large
model.

5.5 Plotting a 1D Sweep

Methods exist to facilitate creating, solving, and plotting the results of a single-variable sweep (see Sweeps
for details). Example usage is as follows:

"Demonstrates manual and auto sweeping and plotting"
import matplotlib as mpl
mpl.use('Agg')
# comment out the lines above to show figures in a window
import numpy as np
from gpkit import Model, Variable, units

(continues on next page)
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from gpkit.constraints.tight import Tight

x = Variable("x", "m", "Swept Variable")
y = Variable("y", "m^2", "Cost")
m = Model(y, [

y >= (x/2)**-0.5 * units.m**2.5 + 1*units.m**2,
Tight([y >= (x/2)**2])
])

# arguments are: model, swept: values, posnomial for y-axis
sol = m.sweep({x: np.linspace(1, 3, 20)}, verbosity=0)
f, ax = sol.plot(y)
ax.set_title("Manually swept (20 points)")
f.show()
f.savefig("plot_sweep1d.png")
sol.save()

# arguments are: model, swept: (min, max, optional logtol), posnomial for y-
→˓axis
sol = m.autosweep({x: (1, 3)}, tol=0.001, verbosity=0)
f, ax = sol.plot(y)
ax.set_title("Autoswept (7 points)\nGuaranteed to be in blue region")
f.show()
f.savefig("plot_autosweep1d.png")

Which results in:
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CHAPTER 6

Building Complex Models

6.1 Checking for result changes

Tracking the effects of changes to complex models can get out of hand; we recommend saving so-
lutions with sol.save(), then checking that new solutions are almost equivalent with sol1.
almost_equal(sol2) and/or print(sol1.diff(sol2)), as shown below.

"Example code for solution saving and differencing."
import pickle
from gpkit import Model, Variable

# build model (dummy)
# decision variable
x = Variable("x")
y = Variable("y")

# objective and constraints
objective = 0.23 + x/y # minimize x and y
constraints = [x + y <= 5, x >= 1, y >= 2]

# create model
m = Model(objective, constraints)

# solve the model
# verbosity is 0 for testing's sake, no need to do that in your code!
sol = m.solve(verbosity=0)

# save the current state of the model
sol.save("last_verified.sol")

# uncomment the line below to verify a new model
last_verified_sol = pickle.load(open("last_verified.sol", mode="rb"))
if not sol.almost_equal(last_verified_sol, reltol=1e-3):

print(last_verified_sol.diff(sol))

(continues on next page)
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# Note you can replace the last three lines above with
# print(sol.diff("last_verified.sol"))
# if you don't mind doing the diff in that direction.

You can also check differences between swept solutions, or between a point solution and a sweep.

6.2 Inheriting from Model

GPkit encourages an object-oriented modeling approach, where the modeler creates objects that inherit
from Model to break large systems down into subsystems and analysis domains. The benefits of this
approach include modularity, reusability, and the ability to more closely follow mental models of system
hierarchy. For example: two different models for a simple beam, designed by different modelers, should
be able to be used interchangeably inside another subsystem (such as an aircraft wing) without either
modeler having to write specifically with that use in mind.

When you create a class that inherits from Model, write a .setup() method to create the model’s
variables and return its constraints. GPkit.Model.__init__ will call that method and automatically
add your model’s name and unique ID to any created variables.

Variables created in a setupmethod are added to the model even if they are not present in any constraints.
This allows for simplistic ‘template’ models, which assume constant values for parameters and can grow
incrementally in complexity as those variables are freed.

At the end of this page a detailed example shows this technique in practice.

6.3 Accessing Variables in Models

GPkit provides several ways to access a Variable in a Model (or ConstraintSet):

• using Model.variables_byname(key). This returns all Variables in the Model, as well as in
any submodels, that match the key.

• using Model.__getitem__. Model[key] returns the only variable matching the key, even if
the match occurs in a submodel. If multiple variables match the key, an error is raised.

These methods are illustrated in the following example.

"Demo of accessing variables in models"
from gpkit import Model, Variable

class Battery(Model):
"""A simple battery

Upper Unbounded
---------------
m

Lower Unbounded
---------------
E

(continues on next page)
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"""
def setup(self):

h = Variable("h", 200, "Wh/kg", "specific energy")
E = self.E = Variable("E", "MJ", "stored energy")
m = self.m = Variable("m", "lb", "battery mass")
return [E <= m*h]

class Motor(Model):
"""Electric motor

Upper Unbounded
---------------
m

Lower Unbounded
---------------
Pmax

"""
def setup(self):

m = self.m = Variable("m", "lb", "motor mass")
f = Variable("f", 20, "lb/hp", "mass per unit power")
Pmax = self.Pmax = Variable("P_{max}", "hp", "max output power")
return [m >= f*Pmax]

class PowerSystem(Model):
"""A battery powering a motor

Upper Unbounded
---------------
m

Lower Unbounded
---------------
E, Pmax

"""
def setup(self):

battery, motor = Battery(), Motor()
components = [battery, motor]
m = self.m = Variable("m", "lb", "mass")
self.E = battery.E
self.Pmax = motor.Pmax

return [components,
m >= sum(comp.m for comp in components)]

PS = PowerSystem()
print("Getting the only var 'E': %s" % PS["E"])
print("The top-level var 'm': %s" % PS.m)
print("All the variables 'm': %s" % PS.variables_byname("m"))

Getting the only var 'E': PowerSystem.Battery.E [MJ]
The top-level var 'm': PowerSystem.m [lb]

(continues on next page)
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All the variables 'm': [gpkit.Variable(PowerSystem.Battery.m [lb]), gpkit.
→˓Variable(PowerSystem.Motor.m [lb]), gpkit.Variable(PowerSystem.m [lb])]

6.4 Vectorization

gpkit.Vectorize creates an environment in which Variables are created with an additional dimen-
sion:

"Example Vectorize usage, from gpkit/tests/t_vars.py"
from gpkit import Variable, Vectorize, VectorVariable

with Vectorize(3):
with Vectorize(5):

y = Variable("y")
x = VectorVariable(2, "x")

z = VectorVariable(7, "z")

assert(y.shape == (5, 3))
assert(x.shape == (2, 5, 3))
assert(z.shape == (7, 3))

This allows models written with scalar constraints to be created with vector constraints:

"Vectorization demonstration"
from gpkit import Model, Variable, Vectorize

class Test(Model):
"""A simple scalar model

Upper Unbounded
---------------
x
"""
def setup(self):

x = self.x = Variable("x")
return [x >= 1]

print("SCALAR")
m = Test()
m.cost = m["x"]
print(m.solve(verbosity=0).summary())

print("__________\n")
print("VECTORIZED")
with Vectorize(3):

m = Test()
m.cost = m["x"].prod()
m.append(m["x"][1] >= 2)
print(m.solve(verbosity=0).summary())

SCALAR

Cost
(continues on next page)
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(1) 1

Model
x 1

Free Variables
--------------
x : 1

__________

VECTORIZED

Cost
(2) 2

x[0] 1

Test1
Model

x[2] 1

x[1] 2

Free Variables
--------------
x : [ 1 2 1 ]

6.5 Multipoint analysis modeling

In many engineering models, there is a physical object that is operated in multiple conditions. Some vari-
ables correspond to the design of the object (size, weight, construction) while others are vectorized over
the different conditions (speed, temperature, altitude). By combining named models and vectorization we
can create intuitive representations of these systems while maintaining modularity and interoperability.

In the example below, the models Aircraft and Wing have a .dynamic() method which creates in-
stances of AircraftPerformance and WingAero, respectively. The Aircraft and Wing models
create variables, such as size and weight without fuel, that represent a physical object. The dynamic
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models create properties that change based on the flight conditions, such as drag and fuel weight.

This means that when an aircraft is being optimized for a mission, you can create the aircraft (AC in this
example) and then pass it to a Mission model which can create vectorized aircraft performance models
for each flight segment and/or flight condition.

The sensitivity diagram which this code outputs shows how it is organized (right-click and open in a new
tab to see it more clearly):

"""Modular aircraft concept"""
import pickle
import numpy as np
from gpkit import Model, Vectorize, parse_variables

class AircraftP(Model):
"""Aircraft flight physics: weight <= lift, fuel burn

Variables
---------
Wfuel [lbf] fuel weight
Wburn [lbf] segment fuel burn

Upper Unbounded
---------------
Wburn, aircraft.wing.c, aircraft.wing.A

Lower Unbounded
---------------
Wfuel, aircraft.W, state.mu

"""
@parse_variables(__doc__, globals())
def setup(self, aircraft, state):

self.aircraft = aircraft
self.state = state

self.wing_aero = aircraft.wing.dynamic(aircraft.wing, state)
self.perf_models = [self.wing_aero]

W = aircraft.W
S = aircraft.wing.S

(continues on next page)
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V = state.V
rho = state.rho

D = self.wing_aero.D
CL = self.wing_aero.CL

return Wburn >= 0.1*D, W + Wfuel <= 0.5*rho*CL*S*V**2, {
"performance":

self.perf_models}

class Aircraft(Model):
"""The vehicle model

Variables
---------
W [lbf] weight

Upper Unbounded
---------------
W

Lower Unbounded
---------------
wing.c, wing.S
"""
@parse_variables(__doc__, globals())
def setup(self):

self.fuse = Fuselage()
self.wing = Wing()
self.components = [self.fuse, self.wing]

return [W >= sum(c.W for c in self.components),
self.components]

dynamic = AircraftP

class FlightState(Model):
"""Context for evaluating flight physics

Variables
---------
V 40 [knots] true airspeed
mu 1.628e-5 [N*s/m^2] dynamic viscosity
rho 0.74 [kg/m^3] air density

"""
@parse_variables(__doc__, globals())
def setup(self):

pass

class FlightSegment(Model):
"""Combines a context (flight state) and a component (the aircraft)

Upper Unbounded
(continues on next page)

6.5. Multipoint analysis modeling 47



gpkit Documentation, Release 1.1

(continued from previous page)

---------------
Wburn, aircraft.wing.c, aircraft.wing.A

Lower Unbounded
---------------
Wfuel, aircraft.W

"""
def setup(self, aircraft):

self.aircraft = aircraft

self.flightstate = FlightState()
self.aircraftp = aircraft.dynamic(aircraft, self.flightstate)

self.Wburn = self.aircraftp.Wburn
self.Wfuel = self.aircraftp.Wfuel

return {"aircraft performance": self.aircraftp,
"flightstate": self.flightstate}

class Mission(Model):
"""A sequence of flight segments

Upper Unbounded
---------------
aircraft.wing.c, aircraft.wing.A

Lower Unbounded
---------------
aircraft.W
"""
def setup(self, aircraft):

self.aircraft = aircraft

with Vectorize(4): # four flight segments
self.fs = FlightSegment(aircraft)

Wburn = self.fs.aircraftp.Wburn
Wfuel = self.fs.aircraftp.Wfuel
self.takeoff_fuel = Wfuel[0]

return {
"fuel constraints":

[Wfuel[:-1] >= Wfuel[1:] + Wburn[:-1],
Wfuel[-1] >= Wburn[-1]],

"flight segment":
self.fs}

class WingAero(Model):
"""Wing aerodynamics

Variables
---------
CD [-] drag coefficient
CL [-] lift coefficient

(continues on next page)
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e 0.9 [-] Oswald efficiency
Re [-] Reynold's number
D [lbf] drag force

Upper Unbounded
---------------
D, Re, wing.A, state.mu

Lower Unbounded
---------------
CL, wing.S, state.mu, state.rho, state.V
"""
@parse_variables(__doc__, globals())
def setup(self, wing, state):

self.wing = wing
self.state = state

c = wing.c
A = wing.A
S = wing.S
rho = state.rho
V = state.V
mu = state.mu

return [D >= 0.5*rho*V**2*CD*S,
Re == rho*V*c/mu,
CD >= 0.074/Re**0.2 + CL**2/np.pi/A/e]

class Wing(Model):
"""Aircraft wing model

Variables
---------
W [lbf] weight
S [ft^2] surface area
rho 1 [lbf/ft^2] areal density
A 27 [-] aspect ratio
c [ft] mean chord

Upper Unbounded
---------------
W

Lower Unbounded
---------------
c, S
"""
@parse_variables(__doc__, globals())
def setup(self):

return [c == (S/A)**0.5,
W >= S*rho]

dynamic = WingAero

class Fuselage(Model):
(continues on next page)
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"""The thing that carries the fuel, engine, and payload

A full model is left as an exercise for the reader.

Variables
---------
W 100 [lbf] weight

"""
@parse_variables(__doc__, globals())
def setup(self):

pass

AC = Aircraft()
MISSION = Mission(AC)
M = Model(MISSION.takeoff_fuel, [MISSION, AC])
print(M)
sol = M.solve(verbosity=0)
# save solution to some files
sol.savemat()
sol.savecsv()
sol.savetxt()
sol.save("solution.pkl")
# retrieve solution from a file
sol_loaded = pickle.load(open("solution.pkl", "rb"))

vars_of_interest = set(AC.varkeys)
# note that there's two ways to access submodels
assert (MISSION["flight segment"]["aircraft performance"]

is MISSION.fs.aircraftp)
vars_of_interest.update(MISSION.fs.aircraftp.unique_varkeys)
vars_of_interest.add(M["D"])
print(sol.summary(vars_of_interest))
print(sol.table(tables=["loose constraints"]))

M.append(MISSION.fs.aircraftp.Wburn >= 0.2*MISSION.fs.aircraftp.wing_aero.D)
sol = M.solve(verbosity=0)
print(sol.diff("solution.pkl", showvars=vars_of_interest, sortbymodel=False))

try:
from gpkit.interactive.sankey import Sankey
variablesankey = Sankey(sol, M).diagram(AC.wing.A)
sankey = Sankey(sol, M).diagram(width=1200, height=400, maxlinks=30)
# the line below shows an interactive graph if run in jupyter notebook
sankey # pylint: disable=pointless-statement

except (ImportError, ModuleNotFoundError):
print("Making Sankey diagrams requires the ipysankeywidget package")

from gpkit.interactive.references import referencesplot
referencesplot(M, openimmediately=False)

Note that the output table has been filtered above to show only variables of interest.

Cost Function
-------------
Wfuel[0]

(continues on next page)
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Constraints
-----------
Mission
"fuel constraints":

Wfuel[:-1] Wfuel[1:] + Wburn[:-1]
Wfuel[3] Wburn[3]

FlightSegment
AircraftP
Wburn[:] 0.1·D[:]
Aircraft.W + Wfuel[:] 0.5·Mission.FlightSegment.FlightState.

→˓rho[:]·CL[:]·S·V[:]2

"performance":
WingAero
D[:] 0.5·Mission.FlightSegment.FlightState.rho[:]·V[:]2·CD[:]·S
Re[:] = Mission.FlightSegment.FlightState.rho[:]·V[:]·c/mu[:]
CD[:] 0.074/Re[:]^0.2 + CL[:]2/𝜋/A/e[:]

FlightState
(no constraints)

Aircraft
Aircraft.W Fuselage.W + Wing.W
Fuselage
(no constraints)

Wing
c = (S/A)^0.5
Wing.W S·Wing.rho

Wburn[2] CD[2]
(0.272lbf) (0.0189)

Wfuel[2]
(0.544lbf)

Wfuel[1] Wfuel[3] CD[3]
(0.817lbf) (0.272lbf) (0.0188)

Cost
(1.09lbf) Wfuel[0]

(1.09lbf) CL[1]2

Wburn[1] CD[1] (1.01)
(0.273lbf) (0.0189) 1/Re[1]^0.2

(0.0772)

CL[0]2

Wburn[0] CD[0] (1.01)
(0.274lbf) (0.019) 1/Re[0]^0.2

(0.0772)

(continues on next page)
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FlightSegment AircraftP

Mission

Model Wfuel[0] Wfuel[1] + Wburn[0]

Wfuel[1] Wfuel[2] + Wburn[1]
Wfuel[2] Wfuel[3] + Wburn[2]

Wing

Aircraft W Fuselage.W + Wing.W

Fuselage W = 100lbf

Free Variables
--------------

| Aircraft
W : 144.1 [lbf] weight

| Aircraft.Wing
S : 44.14 [ft2] surface area
W : 44.14 [lbf] weight
c : 1.279 [ft] mean chord

| Mission.FlightSegment.AircraftP
Wburn : [ 0.274 0.273 0.272 0.272 ] [lbf] segment fuel burn
Wfuel : [ 1.09 0.817 0.544 0.272 ] [lbf] fuel weight

| Mission.FlightSegment.AircraftP.WingAero
D : [ 2.74 2.73 2.72 2.72 ] [lbf] drag force

Insensitive Constraints |below +1e-05|
--------------------------------------
(none)

Solution Diff (for selected variables)
======================================
(argument is the baseline solution)

Constraint Differences

**********************
@@ -31,3 +31,4 @@

Wing
c = (S/A)^0.5
Wing.W S·Wing.rho

+ Wburn[:] 0.2·D[:]

**********************

Relative Differences |above 1%|
-------------------------------
Wburn : [ +102.1% +101.6% +101.1% +100.5% ] segment fuel burn

(continues on next page)

52 Chapter 6. Building Complex Models



gpkit Documentation, Release 1.1

(continued from previous page)

Wfuel : [ +101.3% +101.1% +100.8% +100.5% ] fuel weight
D : [ +1.1% - - - ] drag force
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CHAPTER 7

Advanced Commands

7.1 Choice Variables

If MOSEK 9 is installed, GPkit supports discretized free variables with the mosek_conif solver.
Choice variables are free in the sense of having multiple possible choices, but discretized in the sense
of having a limited set of possible solutions.

"Example choice variable usage"
import numpy as np
from gpkit import Variable, Model

x = Variable("x", choices=range(1, 4))
num = Variable("numerator", np.linspace(0.5, 7, 11))

m = Model(x + num/x)
sol = m.solve(verbosity=0)

print(sol.table())

If solved with the mosek_conif solver, the script above will print:

Optimal Cost
------------
[ 1.5 2.15 2.8 3.22 ... ]

~~~~~~~~
WARNINGS
~~~~~~~~
No Dual Solution
----------------
This model has the discretized choice variables [x] and hence no dual
solution. You can fix those variables to their optimal value and get
sensitivities to the resulting continuous problem by updating your model's
substitions with `sol["choicevariables"]`.

(continues on next page)
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~~~~~~~~

Swept Variables
---------------
numerator : [ 0.5

1.15
1.8
2.45
3.1
3.75
4.4
5.05
5.7
6.35
7 ]

Free Variables
--------------
x : [ 1

1
1
2
2
2
2
2
2
3
3 ]

Note that the optimal values for x are discretized, clicking from 1 to 2 to 3 during the sweep, and that the
solution has no dual variables.

7.2 Derived Variables

7.2.1 Evaluated Fixed Variables

Some fixed variables may be derived from the values of other fixed variables. For example, air density,
viscosity, and temperature are functions of altitude. These can be represented by a substitution or value
that is a one-argument function accepting model.substitutions (for details, see Substitutions be-
low).

"Example pre-solve evaluated fixed variable"
from gpkit import Variable, Model, units

# code from t_GPSubs.test_calcconst in tests/t_sub.py
x = Variable("x", "hours")
t_day = Variable("t_{day}", 12, "hours")
t_night = Variable("t_{night}",

lambda c: 1*units.day - c(t_day), "hours")

# note that t_night has a function as its value
m = Model(x, [x >= t_day, x >= t_night])
sol = m.solve(verbosity=0)

(continues on next page)
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assert sol["variables"][t_night] == 12

# call substitutions
m.substitutions.update({t_day: ("sweep", [8, 12, 16])})
sol = m.solve(verbosity=0)
assert (sol["variables"][t_night] == [16, 12, 8]).all()

These functions are automatically differentiated with the ad package to provide more accurate sensitivi-
ties. In some cases may require using functions from the ad.admath instead of their python or numpy
equivalents; the ad documentation contains details on how to do this.

7.2.2 Evaluated Free Variables

Some free variables may be evaluated from the values of other (non-evaluated) free variables after the
optimization is performed. For example, if the efficiency 𝜈 of a motor is not a GP-compatible variable,
but (1 − 𝜈) is a valid GP variable, then 𝜈 can be calculated after solving. These evaluated free variables
can be represented by a Variable with evalfn metadata. When constructing an evalfn, remember
that square-bracket access to variables pulls out magnitudes: use round-bracket access (i.e. v(var)) to
ensure unit correctness.

"Example post-solve evaluated variable"
from gpkit import Variable, Model

# code from t_constraints.test_evalfn in tests/t_sub.py
x = Variable("x")
x2 = Variable("x^2", evalfn=lambda v: v(x)**2)
m = Model(x, [x >= 2])
m.unique_varkeys = set([x2.key])
sol = m.solve(verbosity=0)
assert abs(sol(x2) - 4) <= 1e-4

Note that this variable should not be used in constructing your model! For evaluated variables that can be
used during a solution, see Sequential Geometric Programs.

7.3 Sweeps

Sweeps are useful for analyzing tradeoff surfaces. A sweep “value” is an Iterable of numbers,
e.g. [1, 2, 3]. The simplest way to sweep a model is to call model.sweep({sweepvar:
sweepvalues}), which will return a solution array but not change the model’s substitutions dictio-
nary. If multiple sweepvars are given, the method will run them all as independent one-dimensional
sweeps and return a list of one solution per sweep. The method model.autosweep({sweepvar:
(start, end)}, tol=0.01) behaves very similarly, except that only the bounds of the sweep need
be specified and the region in betwen will be swept to a maximum possible error of tol in the log of the
cost. For details see 1D Autosweeps below.

7.3.1 Sweep Substitutions

Alternatively, or to sweep a higher-dimensional grid, Variables can swept with a substitution value takes
the form ('sweep', Iterable), such as ('sweep', np.linspace(1e6, 1e7, 100)).
During variable declaration, giving an Iterable value for a Variable is assumed to be giving it a sweep
value: for example, x = Variable("x", [1, 2, 3]) will sweep x over three values.

7.3. Sweeps 57

https://pypi.org/project/ad/
https://pypi.org/project/ad/


gpkit Documentation, Release 1.1

Vector variables may also be substituted for: {y: ("sweep" ,[[1, 2], [1, 2], [1,
2]])} will sweep 𝑦 ∀ 𝑦𝑖 ∈ {1, 2}. These sweeps cannot be specified during Variable creation.

A Model with sweep substitutions will solve for all possible combinations: e.g., if there’s a variable x
with value ('sweep', [1, 3]) and a variable y with value ('sweep', [14, 17]) then the gp
will be solved four times, for (𝑥, 𝑦) ∈ {(1, 14), (1, 17), (3, 14), (3, 17)}. The returned solutions will be
a one-dimensional array (or 2-D for vector variables), accessed in the usual way.

7.3.2 1D Autosweeps

If you’re only sweeping over a single variable, autosweeping lets you specify a tolerance for cost error
instead of a number of exact positions to solve at. GPkit will then search the sweep segment for a locally
optimal number of sweeps that can guarantee a max absolute error on the log of the cost.

Accessing variable and cost values from an autosweep is slightly different, as can be seen in this example:

"Show autosweep_1d functionality"
import pickle
import numpy as np
import gpkit
from gpkit import units, Variable, Model
from gpkit.tools.autosweep import autosweep_1d
from gpkit.small_scripts import mag

A = Variable("A", "m**2")
l = Variable("l", "m")

m1 = Model(A**2, [A >= l**2 + units.m**2])
tol1 = 1e-3
bst1 = autosweep_1d(m1, tol1, l, [1, 10], verbosity=0)
print("Solved after %2i passes, cost logtol +/-%.3g" % (bst1.nsols, bst1.
→˓tol))
# autosweep solution accessing
l_vals = np.linspace(1, 10, 10)
sol1 = bst1.sample_at(l_vals)
print("values of l: %s" % l_vals)
print("values of A: [%s] %s" %

(" ".join("% .1f" % n for n in sol1("A").magnitude), sol1("A").units))
cost_estimate = sol1["cost"]
cost_lb, cost_ub = sol1.cost_lb(), sol1.cost_ub()
print("cost lower bound:\n%s\n" % cost_lb)
print("cost estimate:\n%s\n" % cost_estimate)
print("cost upper bound:\n%s\n" % cost_ub)
# you can evaluate arbitrary posynomials
np.testing.assert_allclose(mag(2*sol1(A)), mag(sol1(2*A)))
assert (sol1["cost"] == sol1(A**2)).all()
# the cost estimate is the logspace mean of its upper and lower bounds
np.testing.assert_allclose((np.log(mag(cost_lb)) + np.log(mag(cost_ub)))/2,

np.log(mag(cost_estimate)))
# save autosweep to a file and retrieve it
bst1.save("autosweep.pkl")
bst1_loaded = pickle.load(open("autosweep.pkl", "rb"))

# this problem is two intersecting lines in logspace
m2 = Model(A**2, [A >= (l/3)**2, A >= (l/3)**0.5 * units.m**1.5])
tol2 = {"mosek_cli": 1e-6, "mosek_conif": 1e-6,

"cvxopt": 1e-7}[gpkit.settings["default_solver"]]

(continues on next page)
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# test Model method
sol2 = m2.autosweep({l: [1, 10]}, tol2, verbosity=0)
bst2 = sol2.bst
print("Solved after %2i passes, cost logtol +/-%.3g" % (bst2.nsols, bst2.
→˓tol))
print("Table of solutions used in the autosweep:")
print(bst2.solarray.table())

If you need access to the raw solutions arrays, the smallest simplex tree containing any given point can
be gotten with min_bst = bst.min_bst(val), the extents of that tree with bst.bounds and
solutions of that tree with bst.sols. More information is in help(bst).

7.4 Tight ConstraintSets

Tight ConstraintSets will warn if any inequalities they contain are not tight (that is, the right side does
not equal the left side) after solving. This is useful when you know that a constraint should be tight for a
given model, but representing it as an equality would be non-convex.

"Example Tight ConstraintSet usage"
from gpkit import Variable, Model
from gpkit.constraints.tight import Tight

Tight.reltol = 1e-2 # set the global tolerance of Tight
x = Variable('x')
x_min = Variable('x_{min}', 2)
m = Model(x, [Tight([x >= 1], reltol=1e-3), # set the specific tolerance

x >= x_min])
m.solve(verbosity=0) # prints warning

7.5 Loose ConstraintSets

Loose ConstraintSets will warn if any GP-compatible constraints they contain are not loose (that is, their
sensitivity is above some threshold after solving). This is useful when you want a constraint to be inactive
for a given model because it represents an important model assumption (such as a fit only valid over a
particular interval).

"Example Loose ConstraintSet usage"
from gpkit import Variable, Model
from gpkit.constraints.loose import Loose

Loose.reltol = 1e-4 # set the global tolerance of Loose
x = Variable('x')
x_min = Variable('x_{min}', 1)
m = Model(x, [Loose([x >= 2], senstol=1e-4), # set the specific tolerance

x >= x_min])
m.solve(verbosity=0) # prints warning
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7.6 Substitutions

Substitutions are a general-purpose way to change every instance of one variable into either a number or
another variable.

7.6.1 Substituting into Posynomials, NomialArrays, and GPs

The examples below all use Posynomials and NomialArrays, but the syntax is identical for GPs (except
when it comes to sweep variables).

"Example substitution; adapted from t_sub.py/t_NomialSubs /test_Basic"
from gpkit import Variable
x = Variable("x")
p = x**2
assert p.sub({x: 3}) == 9
assert p.sub({x.key: 3}) == 9
assert p.sub({"x": 3}) == 9

Here the variable x is being replaced with 3 in three ways: first by substituting for x directly, then by
substituting for the VarKey("x"), then by substituting the string “x”. In all cases the substitution is
understood as being with the VarKey: when a variable is passed in the VarKey is pulled out of it, and
when a string is passed in it is used as an argument to the Posynomial’s varkeys dictionary.

7.6.2 Substituting multiple values

"Example substitution; adapted from t_sub.py/t_NomialSubs/test_Vector"
from gpkit import Variable, VectorVariable
x = Variable("x")
y = Variable("y")
z = VectorVariable(2, "z")
p = x*y*z
assert all(p.sub({x: 1, "y": 2}) == 2*z)
assert all(p.sub({x: 1, y: 2, "z": [1, 2]}) == z.sub({z: [2, 4]}))

To substitute in multiple variables, pass them in as a dictionary where the keys are what will be replaced
and values are what it will be replaced with. Note that you can also substitute for VectorVariables by their
name or by their NomialArray.

7.6.3 Substituting with nonnumeric values

You can also substitute in sweep variables (see Sweeps), strings, and monomials:

Note that units are preserved, and that the value can be either a string (in which case it just renames the
variable), a varkey (in which case it changes its description, including the name) or a Monomial (in which
case it substitutes for the variable with a new monomial).

7.6.4 Updating ConstraintSet substitutions

ConstraintSets have a .substitutions KeyDict attribute which will be substituted before solving.
This KeyDict accepts variable names, VarKeys, and Variable objects as keys, and can be updated (or
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deleted from) like a regular Python dictionary to change the substitutions that will be used at solve-
time. If a ConstraintSet itself contains ConstraintSets, it and all its elements share pointers to the same
substitutions dictionary object, so that updating any one of them will update all of them.

7.6.5 Fixed Variables

When a Model is created, any fixed Variables are used to form a dictionary: {var: var.
descr["value"] for var in self.varlocs if "value" in var.descr}. This dic-
tionary in then substituted into the Model’s cost and constraints before the substitutions argument
is (and hence values are supplanted by any later substitutions).

solution.subinto(p) will substitute the solution(s) for variables into the posynomial p, returning
a NomialArray. For a non-swept solution, this is equivalent to p.sub(solution["variables"]).

You can also substitute by just calling the solution, i.e. solution(p). This returns a numpy array of
just the coefficients (c) of the posynomial after substitution, and will raise a‘ ValueError` if some of
the variables in p were not found in solution.

7.6.6 Freeing Fixed Variables

After creating a Model, it may be useful to “free” a fixed variable and resolve. This can be done using
the command del m.substitutions["x"], where m is a Model. An example of how to do this is
shown below.

"Example of freeing fixed variables"
from gpkit import Variable, Model
x = Variable("x")
y = Variable("y", 3) # fix value to 3
m = Model(x, [x >= 1 + y, y >= 1])
# verbosity is 0 for testing's sake, no need to do that in your code!
sol = m.solve(verbosity=0) # optimal cost is 4; y appears in sol["constants
→˓"]

assert abs(sol["cost"] - 4) <= 1e-4
assert y in sol["constants"]

del m.substitutions["y"]
sol = m.solve(verbosity=0) # optimal cost is 2; y appears in Free Variables
assert abs(sol["cost"] - 2) <= 1e-4
assert y in sol["freevariables"]
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Signomial Programming

Signomial programming finds a local solution to a problem of the form:

minimize 𝑔0(𝑥)
subject to 𝑓𝑖(𝑥) = 1, 𝑖 = 1, ....,𝑚

𝑔𝑖(𝑥)− ℎ𝑖(𝑥) ≤ 1, 𝑖 = 1, ...., 𝑛

where each 𝑓 is monomial while each 𝑔 and ℎ is a posynomial.

This requires multiple solutions of geometric programs, and so will take longer to solve than an equivalent
geometric programming formulation.

In general, when given the choice of which variables to include in the positive-posynomial / 𝑔 side of the
constraint, the modeler should:

1. maximize the number of variables in 𝑔,

2. prioritize variables that are in the objective,

3. then prioritize variables that are present in other constraints.

The .localsolve syntax was chosen to emphasize that signomial programming returns a local opti-
mum. For the same reason, calling .solve on an SP will raise an error.

By default, signomial programs are first solved conservatively (by assuming each ℎ is equal only to its
constant portion) and then become less conservative on each iteration.

8.1 Example Usage

"""Adapted from t_SP in tests/t_geometric_program.py"""
from gpkit import Model, Variable, SignomialsEnabled

# Decision variables
x = Variable('x')
y = Variable('y')

(continues on next page)
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# must enable signomials for subtraction
with SignomialsEnabled():

constraints = [x >= 1-y, y <= 0.1]

# create and solve the SP
m = Model(x, constraints)
print(m.localsolve(verbosity=0).summary())
assert abs(m.solution(x) - 0.9) < 1e-6

# full interim solutions are available
print("x values of each GP solve (note convergence)")
print(", ".join("%.5f" % sol["freevariables"][x] for sol in m.program.
→˓results))

# use x0 to give the solution, reducing number of GPs needed
m.localsolve(verbosity=0, x0={x: 0.9, y:0.1})
assert len(m.program.results) == 2

When using the localsolve method, the reltol argument specifies the relative tolerance of the
solver: that is, by what percent does the solution have to improve between iterations? If any iteration
improves less than that amount, the solver stops and returns its value.

If you wish to start the local optimization at a particular point 𝑥0, however, you may do so by putting that
position (a dictionary formatted as you would a substitution) as the x0 argument.

8.2 Sequential Geometric Programs

The method of solving local GP approximations of a non-GP compatible model can be generalized, at the
cost of the general smoothness and lack of a need for trust regions that SPs guarantee.

For some applications, it is useful to call external codes which may not be GP compatible. Imagine we
wished to solve the following optimization problem:

minimize 𝑦
subject to 𝑦 ≥ sin(𝑥)

𝜋
4 ≤ 𝑥 ≤ 𝜋

2

This problem is not GP compatible due to the 𝑠𝑖𝑛(𝑥) constraint. One approach might be to take the first
term of the Taylor expansion of 𝑠𝑖𝑛(𝑥) and attempt to solve:

"Can be found in gpkit/docs/source/examples/sin_approx_example.py"
import numpy as np
from gpkit import Variable, Model

x = Variable("x")
y = Variable("y")

objective = y

constraints = [y >= x,
x <= np.pi/2,
x >= np.pi/4,

]

(continues on next page)
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m = Model(objective, constraints)
print(m.solve(verbosity=0).summary())

Cost
(0.785) 0.785

x 0.785
Model

y x

Free Variables
--------------
x : 0.7854
y : 0.7854

Assume we have some external code which is capable of evaluating our incompatible function:

"""External function for GPkit to call. Can be found
in gpkit/docs/source/examples/external_function.py"""
import numpy as np

def external_code(x):
"Returns sin(x)"
return np.sin(x)

Now, we can create a ConstraintSet that allows GPkit to treat the incompatible constraint as though it
were a signomial programming constraint:

"Can be found in gpkit/docs/source/examples/external_constraint.py"
from external_function import external_code

class ExternalConstraint:
"Class for external calling"

def __init__(self, x, y):
# We need a GPkit variable defined to return in our constraint. The
# easiest way to do this is to read in the parameters of interest in
# the initiation of the class and store them here.
self.x = x
self.y = y

def as_gpconstr(self, x0):

(continues on next page)

8.2. Sequential Geometric Programs 65



gpkit Documentation, Release 1.1

(continued from previous page)

"Returns locally-approximating GP constraint"
# Creating a default constraint for the first solve
if self.x not in x0:

return (self.y >= self.x)
# Otherwise calls external code at the current position...
x_star = x0[self.x]
res = external_code(x_star)
# ...and returns a posynomial approximation around that position
return (self.y >= res * self.x/x_star)

and replace the incompatible constraint in our GP:

"Can be found in gpkit/docs/source/examples/external_sp.py"
import numpy as np
from gpkit import Variable, Model
from external_constraint import ExternalConstraint

x = Variable("x")
y = Variable("y")

objective = y

constraints = [ExternalConstraint(x, y),
x <= np.pi/2,
x >= np.pi/4,

]

m = Model(objective, constraints)
print(m.localsolve(verbosity=0).summary())

Cost
(0.707) 0.785

<external_constraint.ExternalConstraint object>
Model

x 0.785

Free Variables
--------------
x : 0.7854
y : 0.7071

which is the expected result. This method has been generalized to larger problems, such as calling XFOIL
and AVL.
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If you wish to start the local optimization at a particular point 𝑥0, however, you may do so by putting that
position (a dictionary formatted as you would a substitution) as the x0 argument
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Examples

9.1 iPython Notebook Examples

More examples, including some with in-depth explanations and interactive visualizations, can be seen on
nbviewer.

9.2 A Trivial GP

The most trivial GP we can think of: minimize 𝑥 subject to the constraint 𝑥 ≥ 1.

"Very simple problem: minimize x while keeping x greater than 1."
from gpkit import Variable, Model

# Decision variable
x = Variable("x")

# Constraint
constraints = [x >= 1]

# Objective (to minimize)
objective = x

# Formulate the Model
m = Model(objective, constraints)

# Solve the Model
sol = m.solve(verbosity=0)

# print selected results
print("Optimal cost: %.4g" % sol["cost"])
print("Optimal x val: %.4g" % sol["variables"][x])

Of course, the optimal value is 1. Output:
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Optimal cost: 1
Optimal x val: 1

9.3 Maximizing the Volume of a Box

This example comes from Section 2.4 of the GP tutorial, by S. Boyd et. al.

"Maximizes box volume given area and aspect ratio constraints."
from gpkit import Variable, Model

# Parameters
alpha = Variable("alpha", 2, "-", "lower limit, wall aspect ratio")
beta = Variable("beta", 10, "-", "upper limit, wall aspect ratio")
gamma = Variable("gamma", 2, "-", "lower limit, floor aspect ratio")
delta = Variable("delta", 10, "-", "upper limit, floor aspect ratio")
A_wall = Variable("A_{wall}", 200, "m^2", "upper limit, wall area")
A_floor = Variable("A_{floor}", 50, "m^2", "upper limit, floor area")

# Decision variables
h = Variable("h", "m", "height")
w = Variable("w", "m", "width")
d = Variable("d", "m", "depth")

# Constraints
constraints = [A_wall >= 2*h*w + 2*h*d,

A_floor >= w*d,
h/w >= alpha,
h/w <= beta,
d/w >= gamma,
d/w <= delta]

# Objective function
V = h*w*d
objective = 1/V # To maximize V, we minimize its reciprocal

# Formulate the Model
m = Model(objective, constraints)

# Solve the Model and print the results table
print(m.solve(verbosity=0).table())

The output is

/
Cost

(0.00367/m3) /alpha
/ (2, fixed)

A_{wall} = 200m2

(continues on next page)
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Model

A_{wall} 2·h·w + 2·h·d

alpha = 2

alpha h/w

Free Variables
--------------
d : 8.17 [m] depth
h : 8.163 [m] height
w : 4.081 [m] width

Fixed Variables
---------------
A_{floor} : 50 [m2] upper limit, floor area
A_{wall} : 200 [m2] upper limit, wall area

alpha : 2 lower limit, wall aspect ratio
beta : 10 upper limit, wall aspect ratio

delta : 10 upper limit, floor aspect ratio
gamma : 2 lower limit, floor aspect ratio

Variable Sensitivities
----------------------
A_{wall} : -1.5 upper limit, wall area

alpha : +0.5 lower limit, wall aspect ratio

Most Sensitive Constraints
--------------------------
+1.5 : A_{wall} 2·h·w + 2·h·d
+0.5 : alpha h/w

9.4 Water Tank

Say we had a fixed mass of water we wanted to contain within a tank, but also wanted to minimize the
cost of the material we had to purchase (i.e. the surface area of the tank):

"Minimizes cylindrical tank surface area for a particular volume."
from gpkit import Variable, VectorVariable, Model

M = Variable("M", 100, "kg", "Mass of Water in the Tank")
rho = Variable("\\rho", 1000, "kg/m^3", "Density of Water in the Tank")
A = Variable("A", "m^2", "Surface Area of the Tank")
V = Variable("V", "m^3", "Volume of the Tank")
d = VectorVariable(3, "d", "m", "Dimension Vector")

(continues on next page)
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# because its units are incorrect the line below will print a warning
bad_monomial_equality = (M == V)

constraints = (A >= 2*(d[0]*d[1] + d[0]*d[2] + d[1]*d[2]),
V == d[0]*d[1]*d[2],
M == V*rho)

m = Model(A, constraints)
sol = m.solve(verbosity=0)
print(sol.summary())

The output is:

Infeasible monomial equality: Cannot convert from 'V [m3]' to 'M [kg]'

d[0] M
Cost (0.464m) (100kg, fixed)

(1.29m2) A
(1.29m2)

d[1]·d[2]
(0.215m2)

A 2·(d[0]·d[1] + d[0]·d[2] + d[1]·d[2])

M = 100kg

Model
M = V·\rho

V = d[0]·d[1]·d[2]

\rho = 1,000kg/m3

Free Variables
--------------
A : 1.293 [m2] Surface Area of the Tank
V : 0.1 [m3] Volume of the Tank
d : [ 0.464 0.464 0.464 ] [m] Dimension Vector
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9.5 Simple Wing

This example comes from Section 3 of Geometric Programming for Aircraft Design Optimization, by W.
Hoburg and P. Abbeel.

"Minimizes airplane drag for a simple drag and structure model."
import pickle
import numpy as np
from gpkit import Variable, Model, SolutionArray
pi = np.pi

# Constants
k = Variable("k", 1.2, "-", "form factor")
e = Variable("e", 0.95, "-", "Oswald efficiency factor")
mu = Variable("\\mu", 1.78e-5, "kg/m/s", "viscosity of air")
rho = Variable("\\rho", 1.23, "kg/m^3", "density of air")
tau = Variable("\\tau", 0.12, "-", "airfoil thickness to chord ratio")
N_ult = Variable("N_{ult}", 3.8, "-", "ultimate load factor")
V_min = Variable("V_{min}", 22, "m/s", "takeoff speed")
C_Lmax = Variable("C_{L,max}", 1.5, "-", "max CL with flaps down")
S_wetratio = Variable("(\\frac{S}{S_{wet}})", 2.05, "-", "wetted area ratio")
W_W_coeff1 = Variable("W_{W_{coeff1}}", 8.71e-5, "1/m",

"Wing Weight Coefficent 1")
W_W_coeff2 = Variable("W_{W_{coeff2}}", 45.24, "Pa",

"Wing Weight Coefficent 2")
CDA0 = Variable("(CDA0)", 0.031, "m^2", "fuselage drag area")
W_0 = Variable("W_0", 4940.0, "N", "aircraft weight excluding wing")

# Free Variables
D = Variable("D", "N", "total drag force")
A = Variable("A", "-", "aspect ratio")
S = Variable("S", "m^2", "total wing area")
V = Variable("V", "m/s", "cruising speed")
W = Variable("W", "N", "total aircraft weight")
Re = Variable("Re", "-", "Reynold's number")
C_D = Variable("C_D", "-", "Drag coefficient of wing")
C_L = Variable("C_L", "-", "Lift coefficent of wing")
C_f = Variable("C_f", "-", "skin friction coefficient")
W_w = Variable("W_w", "N", "wing weight")

constraints = []

# Drag model
C_D_fuse = CDA0/S
C_D_wpar = k*C_f*S_wetratio
C_D_ind = C_L**2/(pi*A*e)
constraints += [C_D >= C_D_fuse + C_D_wpar + C_D_ind]

# Wing weight model
W_w_strc = W_W_coeff1*(N_ult*A**1.5*(W_0*W*S)**0.5)/tau
W_w_surf = W_W_coeff2 * S
constraints += [W_w >= W_w_surf + W_w_strc]

# and the rest of the models
constraints += [D >= 0.5*rho*S*C_D*V**2,

Re <= (rho/mu)*V*(S/A)**0.5,

(continues on next page)
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C_f >= 0.074/Re**0.2,
W <= 0.5*rho*S*C_L*V**2,
W <= 0.5*rho*S*C_Lmax*V_min**2,
W >= W_0 + W_w]

print("SINGLE\n======")
m = Model(D, constraints)
sol = m.solve(verbosity=0)
print(sol.summary())
# save solution to a file and retrieve it
sol.save("solution.pkl")
sol.save_compressed("solution.pgz")
print(sol.diff("solution.pkl"))

print("SWEEP\n=====")
N = 2
sweeps = {V_min: ("sweep", np.linspace(20, 25, N)),

V: ("sweep", np.linspace(45, 55, N)), }
m.substitutions.update(sweeps)
sweepsol = m.solve(verbosity=0)
print(sweepsol.summary())
sol_loaded = pickle.load(open("solution.pkl", "rb"))
assert sol_loaded.almost_equal(SolutionArray.decompress_file("solution.pgz"))
print(sweepsol.diff(sol_loaded, absdiff=True, senssdiff=True))

The output is:

SINGLE
======

W_0
Cost (4,940N, fixed)

(303N) W
(7,341N)

W_w S
(2,401N) (16.4m2)

W W_0 + W_w

C_D (CDA0)/S + k·C_f·(\frac{S}{S_{wet}}) + C_L2/(𝜋·A·e)

D 0.5·\rho·S·C_D·V2

W_0 = 4,940N

ModelW 0.5·\rho·S·C_L·V2

e = 0.95
(\frac{S}{S_{wet}}) = 2.05
C_f 0.074/Re^0.2
k = 1.2

(continues on next page)
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[12 terms]

Free Variables
--------------
A : 8.46 aspect ratio

C_D : 0.02059 Drag coefficient of wing
C_L : 0.4988 Lift coefficent of wing
C_f : 0.003599 skin friction coefficient
D : 303.1 [N] total drag force

Re : 3.675e+06 Reynold's number
S : 16.44 [m2] total wing area
V : 38.15 [m/s] cruising speed
W : 7341 [N] total aircraft weight

W_w : 2401 [N] wing weight

Solution Diff
=============
(argument is the baseline solution)

** no constraint differences **

Relative Differences |above 1%|
-------------------------------
The largest is +0%.

SWEEP
=====

Optimal Cost
------------
[ 338 396 294 326 ]

Swept Variables
---------------

V : [ 45 55 45 55 ] [m/s] cruising speed
V_{min} : [ 20 20 25 25 ] [m/s] takeoff speed

Free Variables
--------------
A : [ 6.2 4.77 8.84 7.16 ] aspect ratio

C_D : [ 0.0146 0.0123 0.0196 0.0157 ] Drag coefficient of
→˓wing
C_L : [ 0.296 0.198 0.463 0.31 ] Lift coefficent of
→˓wing
C_f : [ 0.00333 0.00314 0.00361 0.00342 ] skin friction
→˓coefficient
D : [ 338 396 294 326 ] [N] total drag force

Re : [ 5.38e+06 7.24e+06 3.63e+06 4.75e+06 ] Reynold's number
S : [ 18.6 17.3 12.1 11.2 ] [m2] total wing area
W : [ 6.85e+03 6.4e+03 6.97e+03 6.44e+03 ] [N] total aircraft weight

W_w : [ 1.91e+03 1.46e+03 2.03e+03 1.5e+03 ] [N] wing weight

Solution Diff
(continues on next page)
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=============
(argument is the baseline solution)

** no constraint differences **

Relative Differences |above 1%|
-------------------------------

Re : [ +46.4% +97.1% -1.1% +29.2% ] Reynold's number
C_L : [ -40.6% -60.2% -7.2% -37.9% ] Lift coefficent of wing

V : [ +18.0% +44.2% +18.0% +44.2% ] cruising speed
W_w : [ -20.7% -39.3% -15.6% -37.4% ] wing weight
C_D : [ -29.0% -40.4% -5.0% -23.9% ] Drag coefficient of wing

A : [ -26.7% -43.6% +4.5% -15.3% ] aspect ratio
S : [ +12.8% +5.5% -26.5% -32.0% ] total wing area
D : [ +11.5% +30.7% -2.9% +7.5% ] total drag force

V_{min} : [ -9.1% -9.1% +13.6% +13.6% ] takeoff speed
W : [ -6.8% -12.8% -5.1% -12.2% ] total aircraft weight

C_f : [ -7.3% -12.7% - -5.0% ] skin friction
→˓coefficient

Absolute Differences |above 0.1|
--------------------------------

Re : [ +1.7e+06 +3.6e+06 -4.1e+04 +1.1e+06 ] Reynold's number
W : [ -5e+02 -9.4e+02 -3.8e+02 -9e+02 ] [N] total aircraft

→˓weight
W_w : [ -5e+02 -9.4e+02 -3.8e+02 -9e+02 ] [N] wing weight
D : [ +35 +93 -8.8 +23 ] [N] total drag force
V : [ +6.8 +17 +6.8 +17 ] [m/s] cruising speed
S : [ +2.1 +0.9 -4.4 -5.3 ] [m2] total wing area

V_{min} : [ -2 -2 +3 +3 ] [m/s] takeoff speed
A : [ -2.3 -3.7 +0.38 -1.3 ] aspect ratio

C_L : [ -0.2 -0.3 - -0.19 ] Lift coefficent
→˓of wing

Sensitivity Differences |above 0.1|
-----------------------------------

V : [ +0.59 +0.97 +0.25 +0.75 ] cruising speed
V_{min} : [ -0.45 -0.67 - -0.34 ] takeoff speed

C_{L,max} : [ -0.23 -0.34 - -0.17 ] max CL with flaps
→˓down

e : [ +0.15 +0.25 - +0.19 ] Oswald efficiency
→˓factor

W_0 : [ - -0.17 - -0.16 ] aircraft weight
→˓excluding wing

\rho : [ - +0.13 - +0.19 ] density of air
(\frac{S}{S_{wet}}) : [ +0.13 +0.20 - +0.11 ] wetted area ratio

k : [ +0.13 +0.20 - +0.11 ] form factor
N_{ult} : [ -0.11 -0.18 - -0.14 ] ultimate load factor

W_{W_{coeff1}} : [ -0.11 -0.18 - -0.14 ] Wing Weight
→˓Coefficent 1

\tau : [ +0.11 +0.18 - +0.14 ] airfoil thickness
→˓to chord ratio
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9.6 Simple Beam

In this example we consider a beam subjected to a uniformly distributed transverse force along its length.
The beam has fixed geometry so we are not optimizing its shape, rather we are simply solving a discretiza-
tion of the Euler-Bernoulli beam bending equations using GP.

"""
A simple beam example with fixed geometry. Solves the discretized
Euler-Bernoulli beam equations for a constant distributed load
"""
import numpy as np
from gpkit import parse_variables, Model, ureg
from gpkit.small_scripts import mag

eps = 2e-4 # has to be quite large for consistent cvxopt printouts;
# normally you'd set this to something more like 1e-20

class Beam(Model):
"""Discretization of the Euler beam equations for a distributed load.

Variables
---------
EI [N*m^2] Bending stiffness
dx [m] Length of an element
L 5 [m] Overall beam length

Boundary Condition Variables
----------------------------
V_tip eps [N] Tip loading
M_tip eps [N*m] Tip moment
th_base eps [-] Base angle
w_base eps [m] Base deflection

Node Variables of length N
--------------------------
q 100*np.ones(N) [N/m] Distributed load
V [N] Internal shear
M [N*m] Internal moment
th [-] Slope
w [m] Displacement

Upper Unbounded
---------------
w_tip

"""
@parse_variables(__doc__, globals())
def setup(self, N=4):

# minimize tip displacement (the last w)
self.cost = self.w_tip = w[-1]
return {

"definition of dx": L == (N-1)*dx,
"boundary_conditions": [

V[-1] >= V_tip,
M[-1] >= M_tip,
th[0] >= th_base,

(continues on next page)

9.6. Simple Beam 77



gpkit Documentation, Release 1.1

(continued from previous page)

w[0] >= w_base
],

# below: trapezoidal integration to form a piecewise-linear
# approximation of loading, shear, and so on
# shear and moment increase from tip to base (left > right)
"shear integration":

V[:-1] >= V[1:] + 0.5*dx*(q[:-1] + q[1:]),
"moment integration":

M[:-1] >= M[1:] + 0.5*dx*(V[:-1] + V[1:]),
# slope and displacement increase from base to tip (right > left)
"theta integration":

th[1:] >= th[:-1] + 0.5*dx*(M[1:] + M[:-1])/EI,
"displacement integration":

w[1:] >= w[:-1] + 0.5*dx*(th[1:] + th[:-1])
}

b = Beam(N=6, substitutions={"L": 6, "EI": 1.1e4, "q": 110*np.ones(6)})
sol = b.solve(verbosity=0)
print(sol.summary(maxcolumns=6))
w_gp = sol("w") # deflection along beam

L, EI, q = sol("L"), sol("EI"), sol("q")
x = np.linspace(0, mag(L), len(q))*ureg.m # position along beam
q = q[0] # assume uniform loading for the check below
w_exact = q/(24*EI) * x**2 * (x**2 - 4*L*x + 6*L**2) # analytic soln
assert max(abs(w_gp - w_exact)) <= 1.1*ureg.cm

PLOT = False
if PLOT: # pragma: no cover

import matplotlib.pyplot as plt
x_exact = np.linspace(0, L, 1000)
w_exact = q/(24*EI) * x_exact**2 * (x_exact**2 - 4*L*x_exact + 6*L**2)
plt.plot(x, w_gp, color='red', linestyle='solid', marker='^',

markersize=8)
plt.plot(x_exact, w_exact, color='blue', linestyle='dashed')
plt.xlabel('x [m]')
plt.ylabel('Deflection [m]')
plt.axis('equal')
plt.legend(['GP solution', 'Analytical solution'])
plt.show()

The output is:

th[2]
w[2] (0.285)
(0.384m) th[1]

w[3] w[1]
(0.76m) th[3] th[2]

(0.341)
w[4] th[2]
(1.18m)

Cost th[3] th[2]
(1.62m) w[5]

(1.62m)
(continues on next page)
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th[4] th[2]
(0.363)

th[5] th[2]
(0.367)

th[4] th[2]

L = 5·dx

L = 6m

EI = 11,000N·m2

Model w[5] w[4] + 0.5·dx·(th[5] + th[4])
Beam th[2] th[1] + 0.5·dx·(M[2] + M[1])/EI

w[4] w[3] + 0.5·dx·(th[4] + th[3])
M[1] M[2] + 0.5·dx·(V[1] + V[2])
th[3] th[2] + 0.5·dx·(M[3] + M[2])/EI
V[3] V[4] + 0.5·dx·(q[3] + q[4])
th[1] th[0] + 0.5·dx·(M[1] + M[0])/EI

[17 terms]

Free Variables
--------------
dx : 1.2 [m]
→˓Length of an element
M : [ 1.98e+03 1.27e+03 713 317 79.2 0.0002 ] [N·m]
→˓Internal moment
V : [ 660 528 396 264 132 0.0002 ] [N]
→˓Internal shear
th : [ 0.0002 0.177 0.285 0.341 0.363 0.367 ]
→˓Slope
w : [ 0.0002 0.107 0.384 0.76 1.18 1.62 ] [m]
→˓Displacement

By plotting the deflection, we can see that the agreement between the analytical solution and the GP
solution is good.
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CHAPTER 10

Glossary

For an alphabetical listing of all commands, check out the genindex

10.1 gpkit package

10.1.1 Subpackages

gpkit.constraints package

Submodules

gpkit.constraints.array module

gpkit.constraints.bounded module

gpkit.constraints.costed module

gpkit.constraints.gp module

gpkit.constraints.loose module

gpkit.constraints.model module

gpkit.constraints.prog_factories module

gpkit.constraints.relax module
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gpkit.constraints.set module

gpkit.constraints.sgp module

gpkit.constraints.sigeq module

gpkit.constraints.single_equation module

gpkit.constraints.tight module

Module contents

gpkit.interactive package

Submodules

gpkit.interactive.plot_sweep module

gpkit.interactive.plotting module

gpkit.interactive.references module

gpkit.interactive.sankey module

gpkit.interactive.widgets module

Module contents

gpkit.nomials package

Submodules

gpkit.nomials.array module

gpkit.nomials.core module

gpkit.nomials.data module

gpkit.nomials.map module

gpkit.nomials.math module

gpkit.nomials.substitution module

gpkit.nomials.variables module
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Module contents

gpkit.solvers package

Submodules

gpkit.solvers.cvxopt module

gpkit.solvers.mosek_cli module

gpkit.solvers.mosek_conif module

Module contents

gpkit.tools package

Submodules

gpkit.tools.autosweep module

gpkit.tools.docstring module

gpkit.tools.tools module
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Module contents

10.1.2 Submodules

10.1.3 gpkit.build module

10.1.4 gpkit.exceptions module

10.1.5 gpkit.globals module

10.1.6 gpkit.keydict module

10.1.7 gpkit.repr_conventions module

10.1.8 gpkit.small_classes module

10.1.9 gpkit.small_scripts module

10.1.10 gpkit.solution_array module

10.1.11 gpkit.units module

10.1.12 gpkit.varkey module

10.1.13 Module contents
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CHAPTER 11

Citing GPkit

If you use GPkit please cite it with the following bibtex:

@inproceedings{burnell2020gpkit,
author={Burnell, Edward and Damen, Nicole B and Hoburg, Warren},
title={\hbox{GPkit}: A Human-Centered Approach to Convex Optimization in

→˓Engineering Design},
booktitle={Proceedings of the 2020 {CHI} Conference on Human Factors in

→˓Computing Systems},
year={2020},
doi={10.1145/3313831.3376412}

}

(and you can read that paper, which describes some of GPkit’s design philosophy, here.)
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CHAPTER 12
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CHAPTER 13

Release Notes

Release notes are available on Github

89

https://github.com/convexengineering/gpkit/releases/
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