

 Navigation

 	
 index

 	
 next |

 	gpkit 0.4.0 documentation

[image: _images/gplogo.png]

GPkit is a Python package for defining and manipulating
geometric programming (GP) models,
abstracting away the backend solver.
Supported solvers are
MOSEK [http://mosek.com]
and CVXOPT [http://cvxopt.org].

Table of contents

	Geometric Programming 101
	What is a GP?

	Why are GPs special?

	What are Signomials / Signomial Programs?

	Where can I learn more?

	GPkit Overview
	Symbolic expressions

	Substitution

	Model objects

	Installation Instructions
	Install dependencies

	Install a GP solver

	Install GPkit

	Debugging installation

	Updating GPkit between releases

	Getting Started
	Declaring Variables

	Creating Monomials and Posynomials

	Declaring Constraints

	Formulating a Model

	Solving the Model

	Printing Results

	Sensitivities and dual variables

	Advanced Commands
	Feasibility Analysis

	Plotting variable sensitivities

	Substitutions

	Sweeps

	Composite Objectives

	Signomial Programming
	Example Usage

	Calling to External Codes

	Examples
	iPython Notebook Examples

	A Trivial GP

	Maximizing the Volume of a Box

	Water Tank

	Simple Wing

	Simple Beam

	Glossary
	gpkit package

	Citing GPkit

	Acknowledgements

	Release Notes
	Version 0.4

	Version 0.3

	Version 0.2

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

Geometric Programming 101

What is a GP?

A Geometric Program (GP) is a type of non-linear optimization problem whose objective and constraints have a particular form.
The decision variables in a GP must have strictly positive values (that is, they can’t be zero).

GP objectives and inequalities are formed out of monomials and posynomials. In the context of GP, a monomial is defined as:

\[f(x) = c x_1^{a_1} x_2^{a_2} ... x_n^{a_n}\]

where \(c\) is a positive constant, \(x_{1..n}\) are decision variables, and \(a_{1..n}\) are real exponents. For example, taking \(x\), \(y\) and \(z\) to be positive variables, the expressions

\[7x \qquad 4xy^2z \qquad \frac{2x}{y^2z^{0.3}} \qquad \sqrt{2xy}\]

are all monomials. Building on this, a posynomial is defined as a sum of monomials:

\[g(x) = \sum_{k=1}^K c_k x_1^{a_1k} x_2^{a_2k} ... x_n^{a_nk}\]

For example, the expressions

\[x^2 + 2xy + 1 \qquad 7xy + 0.4(yz)^{-1/3} \qquad 0.56 + \frac{x^{0.7}}{yz}\]

are all posynomials.
Alternatively, monomials can be defined as the subset of posynomials having only one term.
Using \(f_i\) to represent a monomial and \(g_i\) to represent a posynomial,
a GP in standard form is written as:

\[\begin{split}\begin{array}{lll}\text{}
\text{minimize} & g_0(x) & \\
\text{subject to} & f_i(x) = 1, & i = 1,....,m \\
 & g_i(x) \leq 1, & i = 1,....,n
 \end{array}\end{split}\]

Boyd et. al. give the following example of a GP in standard form:

\[\begin{split}\begin{array}{llll}\text{}
\text{minimize} & x^{-1}y^{-1/2}z^{-1} + 2.3xz + 4xyz \\
\text{subject to} & (1/3)x^{-2}y^{-2} + (4/3)y^{1/2}z^{-1} \leq 1 \\
 & x + 2y + 3z \leq 1 \\
 & (1/2)xy = 1
 \end{array}\end{split}\]

Why are GPs special?

Geometric programs have several powerful properties:

	Unlike most non-linear optimization problems, large GPs can be solved extremely quickly.

	If there exists an optimal solution to a GP, it is guaranteed to be globally optimal.

	Modern GP solvers require no initial guesses or tuning of solver parameters.

These properties arise because GPs become convex optimization problems via a logarithmic transformation. In addition to their mathematical benefits, recent research has shown that many practical problems can be formulated as GPs or closely approximated as GPs.

What are Signomials / Signomial Programs?

When the coefficients in a posynomial are allowed to be negative (but the variables stay strictly positive), that is called a Signomial.
A Signomial Program has signomial constraints, and while they cannot be solved as quickly or to global optima, because they build on the structure of a GP they can be solved more quickly than a generic nonlinear program. More information on Signomial Programs can be found under `Advanced Commands`_.

Where can I learn more?

To learn more about GPs, refer to the following resources:

	A tutorial on geometric programming [http://stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf], by S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi.

	Convex optimization [http://stanford.edu/~boyd/cvxbook/], by S. Boyd and L. Vandenberghe.

	Geometric Programming for Aircraft Design Optimization [http://web.mit.edu/~whoburg/www/papers/hoburgabbeel2014.pdf], Hoburg, Abbeel 2014

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

GPkit Overview

GPkit is a Python package for defining and manipulating
geometric programming (GP) models,
abstracting away the backend solver.

The goal of GPkit is to make it easy to create, share, and explore geometric programming models, which tends to align well with being fast and mathematically correct.

Symbolic expressions

GPkit is a limited symbolic algebra language, allowing only for the creation of geometric program compatible equations (or signomial program compatible ones, if signomial programming is enabled). As mentioned in `Geometric Programming 101`_, one can view monomials as posynomials with a single term, and posynomials as signomials that have only positive coefficients. The inheritance structure of these objects in GPkit follows this mathematical basis.

[image: _images/inheritance.png]

Substitution

The Varkey object in the graph above is not a algebraic expression, but what GPkit uses as a variable’s “name”. It carries the LaTeX representation of a variable and its units, as well as any other information the user wishes to associate with a variable. The use of VarKeys as opposed to numeric indexing is an important part of the GPkit framework, because it allows a user to keep variable information local and modular.

GPkit keeps its internal representation of objects entirely symbolic until it solves. This means that any expression or Model object can replace any instance of a variable (as represented by a VarKey) with a number, new VarKey, or even an entire Monomial at any time with the .sub() method.

Model objects

In GPkit, a Model object represents a symbolic problem declaration.
That problem may be either GP-compatible or SP-compatible.
To avoid confusion, calling the solve() method on a model will either attempt to solve it for a global optimum (if it’s a GP) or return an error immediately (if it’s an SP). Similarly, calling localsolve() will either start the process of SP-solving (stepping through a sequence of GP-approximations) or return an error for GP-compatible Models. This framework is illustrated below.

[image: _images/solvemethods.png]

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

Installation Instructions

If you encounter bugs during installation email gpkit@mit.edu,
or raise a new issue [http://github.com/hoburg/gpkit/issues/new].

Install dependencies

GPkit’s dependencies are the python packages

	pip

	numpy version 1.8 or newer

	scipy

	pint

and at least one solver (which we will install in a later step).

There are many ways to install these dependencies.
Below is one suggestion for how to do so.

Get pip

	Mac OS X

	Run easy_install pip at a terminal window.

	Linux

	
	Use your package manager to install pip

	Ubuntu: sudo apt-get install python-pip

	Windows

	Do nothing at this step.

Get python packages

	Mac OS X

	
	Run the following commands:

	
	pip install pip --upgrade

	pip install numpy

	pip install scipy

	pip install pint

	Linux

	
	Use your package manager to install numpy and scipy

	Ubuntu: sudo apt-get install python-numpy python-scipy

Run pip install pint

	Windows

	Do nothing at this step.

Install a GP solver

GPkit interfaces with two off the shelf solvers: cvxopt, and mosek.
Cvxopt is open source; mosek requires a commercial licence or (free)
academic license.

At least one solver is required.

Unfortunately, on Windows, due to 32-bit vs 64 bit issues, we do not
currently know of a way to install both cvxopt and mosek simultaneously.
If you are a Windows user, you should pick one solver or the other.
For Windows 10, cvxopt does not appear to be an option.

Installing cvxopt

	Mac OSX and Linux

	Run pip install cvxopt

	Windows

	If you are using Windows 10, stop. Go to Installing mosek.

	Install the Python 2.7 version of Python (x,y) [https://python-xy.github.io/downloads.html] (note that Python (x,y) is 32-bit)

	
	Installing CVXOPT with Anaconda or another Python distribution can be difficult, which is why we recommend Python (x,y).

	Python (x,y) recommends removing any previous installations of Python before installation.

	Be sure to click the cvxopt and pint check boxes under “Choose components” during installation.

Installing mosek

Note: if you do not have a paid license,
you will need an academic or trial license to proceed.

	Mac OS X

	
	If which gcc does not return anything, install XCode and the Apple Command Line Tools [https://developer.apple.com/downloads/index.action?=command%20line%20tools].

	Install cytypesgen via pip install ctypesgen --pre (gpkit uses ctypesgen to interface with the MOSEK C bindings).

	
	Download MOSEK [http://mosek.com/resources/downloads], then:

	
	Move the mosek folder to your home directory

	Follow these steps for Mac [http://docs.mosek.com/7.0/toolsinstall/Mac_OS_X_installation.html].

	Request an academic license file [http://license.mosek.com/academic] and put it in ~/mosek/

	Linux

	
	Install cytypesgen via pip install ctypesgen --pre (gpkit uses ctypesgen to interface with the MOSEK C bindings).

	
	Download MOSEK [http://mosek.com/resources/downloads], then:

	
	Move the mosek folder to your home directory

	Follow these steps for Linux [http://docs.mosek.com/7.0/toolsinstall/Linux_UNIX_installation_instructions.html].

	Request an academic license file [http://license.mosek.com/academic] and put it in ~/mosek/

	Windows

	If you have a 32-bit version of Windows, stop. Go to Installing cvxopt.

	Install the 64-bit version of Anaconda [http://www.continuum.io/downloads#_windows].

	Install cytypesgen via pip install ctypesgen --pre (gpkit uses ctypesgen to interface with the MOSEK C bindings).

	
	Download MOSEK [http://mosek.com/resources/downloads], then:

	
	Follow these steps for Windows [http://docs.mosek.com/7.0/toolsinstall/Windows_installation.html].

	Request an academic license file [http://license.mosek.com/academic] and put it in C:\Users\(your_username)\mosek\

	
	Make sure gcc is on your system path.

	
	To do this, type gcc into a command prompt.

	If you get executable not found, then install the 64-bit version of mingw [http://sourceforge.net/projects/mingw-w64/].

	Make sure the mingw bin directory is on your system path (you may have to add it manually).

Install GPkit

	Run pip install gpkit at the command line.

	Run pip install ipywidgets for interactive control of models (recommended)

	Run python -c "import gpkit.tests; gpkit.tests.run()"

	Optional: to install gpkit into an isolated python environment, install virtualenv, run virtualenv $DESTINATION_DIR then activate it with source $DESTINATION_DIR/bin/activate

Debugging installation

	You may need to rebuild GPkit if any of the following occur:

	
	You install a new solver (mosek or cvxopt) after installing GPkit

	You delete the .gpkit folder from your home directory

	You see Could not load settings file.

	You see Could not load MOSEK library: ImportError('$HOME/.gpkit/expopt.so not found.')

	To rebuild GPkit, do the following:

	
	Run pip uninstall gpkit

	Run pip install --no-cache-dir --no-deps gpkit

	Run python -c "import gpkit.tests; gpkit.tests.run()"

	If any tests fail, email gpkit@mit.edu

Updating GPkit between releases

Active developers may wish to install the latest GPkit [http://github.com/hoburg/gpkit] directly from the source code on Github. To do so,

	Run pip uninstall gpkit to uninstall your existing GPkit.

	Run git clone https://github.com/hoburg/gpkit.git to clone the GPkit repository, or cd gpkit; git pull origin master; cd .. to update your existing repository.

	Run pip install -e gpkit to reinstall GPkit.

	Run python -c "import gpkit.tests; gpkit.tests.run()" to test your installation.

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

Getting Started

GPkit is a Python package, so we assume basic familiarity with Python: if you’re new to Python we recommend you take a look at Learn Python [http://www.learnpython.org].

Alright: install GPkit and import away.

from gpkit import Variable, VectorVariable, Model

Declaring Variables

Instances of the Variable class represent scalar variables. They store a key (i.e. name) used to look up the Variable in dictionaries, and optionally units, a description, and a value (if the Variable is to be held constant).

Free Variables

Declare a variable, x
x = Variable("x")

Declare a variable, y, with units of meters
y = Variable("y", "m")

Declare a variable, z, with units of meters, and a description
z = Variable("z", "m", "A variable called z with units of meters")

Fixed Variables

To declare a variable with a constant value, use the Variable class, as above, but specify the value= input argument:

Declare \rho equal to 1.225 kg/m^3.
NOTE: write a literal backslash by preceding it with another backslash
rho = Variable("\\rho", 1.225, "kg/m^3", "Density of air at sea level")

In the example above, the key name "\\rho" is for LaTeX printing (described later). The unit and description arguments are optional.

#Declare pi equal to 3.14
pi = Variable("\\pi", 3.14)

Vector Variables

Vector variables are represented by the VectorVariable class.
The first argument is the length of the vector.
All other inputs follow those of the Variable class.

Declare a 3-element vector variable "x" with units of "m"
x = VectorVariable(3, "x", "m", "Cube corner coordinates")
x_min = VectorVariable(3, "x", [1, 2, 3], "m", "Cube corner minimum")

Creating Monomials and Posynomials

Monomial and posynomial expressions can be created using mathematical operations on variables.

create a Monomial term xy^2/z
x = Variable("x")
y = Variable("y")
z = Variable("z")
m = x * y**2 / z
type(m) # gpkit.nomials.Monomial

create a Posynomial expression x + xy^2
x = Variable("x")
y = Variable("y")
p = x + x * y**2
type(p) # gpkit.nomials.Posynomial

Declaring Constraints

Constraint objects represent constraints of the form Monomial >= Posynomial or Monomial == Monomial (which are the forms required for GP-compatibility).

Note that constraints must be formed using <=, >=, or == operators, not < or >.

consider a block with dimensions x, y, z less than 1
constrain surface area less than 1.0 m^2
x = Variable("x", "m")
y = Variable("y", "m")
z = Variable("z", "m")
S = Variable("S", 1.0, "m^2")
c = (2*x*y + 2*x*z + 2*y*z <= S)
type(c) # gpkit.nomials.PosynomialInequality

Formulating a Model

The Model class represents an optimization problem. To create one, pass an objective and list of Constraints.

By convention, the objective is the function to be minimized. If you wish to maximize a function, take its reciprocal. For example, the code below creates an objective which, when minimized, will maximize x*y*z.

objective = 1/(x*y*z)
constraints = [2*x*y + 2*x*z + 2*y*z <= S,
 x >= 2*y]
m = Model(objective, constraints)

Solving the Model

When solving the model you can change the level of information that gets printed to the screen with the verbosity setting. A verbosity of 1 (the default) prints warnings and the solution; a verbosity of 2 prints solve time, a verbosity of 3 prints solver output, and a verbosity of 0 prints nothing.

sol = m.solve(verbosity=0)

Printing Results

We can also manually print the solution table, with the same result as if the verbosity argument had been left blank above.

print sol.table()

Cost

 15.59 [1/m**3]

Free Variables

x : 0.5774 [m]
y : 0.2887 [m]
z : 0.3849 [m]

Constants

S : 1 [m**2]

Sensitivities

S : -1.5

print "The x dimension is %s." % (sol(x))

The x dimension is 0.577351209028 meter.

Sensitivities and dual variables

When a GP is solved, the solver returns not just the optimal value for the problem’s variables (known as the “primal solution”) but also, as a side effect of the solving process, the effect that scaling the \(\leq 1\) of each canonical constraint would have on the overall objective (the “dual solution”).

From the dual solution GPkit computes the sensitivities for every fixed variable in the problem. This can be quite useful for seeing which constraints are most crucial, and prioritizing remodeling and assumption-checking.

Using variable sensitivities

Fixed variable sensitivities can be accessed most easily using a SolutionArray’s sens() method, as in this example:

import gpkit
x = gpkit.Variable("x")
x_min = gpkit.Variable("x_{min}", 2)
sol = gpkit.Model(x, [x_min <= x]).solve()
assert sol.sens(x_min) == 1

These sensitivities are actually log derivatives (\(\frac{d \mathrm{log}(y)}{d \mathrm{log}(x)}\)); whereas a regular derivative is a tangent line, these are tangent monomials, so the 1 above indicates that x_min has a linear relation with the objective. This is confirmed by a further example:

import gpkit
x = gpkit.Variable("x")
x_squared_min = gpkit.Variable("x^2_{min}", 2)
sol = gpkit.Model(x, [x_squared_min <= x**2]).solve()
assert sol.sens(x_squared_min) == 2

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

Advanced Commands

Feasibility Analysis

If your Model doesn’t solve, you can automatically find the nearest feasible version of it with the Model.feasibility() command, as shown below. The feasible version can either involve relaxing all constraints by the smallest number possible (that is, dividing the less-than side of every constraint by the same number), relaxing each constraint by its own number and minimizing the product of those numbers, or changing each constant by the smallest total percentage possible.

from gpkit import Variable, Model, NomialArray
x = Variable("x")
x_min = Variable("x_min", 2)
x_max = Variable("x_max", 1)
m = Model(x, [x <= x_max, x >= x_min])
m.solve() # raises a RuntimeWarning!
feas = m.feasibility()

USING OVERALL
m.constraints = NomialArray(m.signomials)/feas["overall"]
m.solve()

USING CONSTRAINTS
m = Model(x, [x <= x_max, x >= x_min])
m.constraints = NomialArray(m.signomials)/feas["constraints"]
m.solve()

USING CONSTANTS
m = Model(x, [x <= x_max, x >= x_min])
m.substitutions.update(feas["constants"])
m.solve()

Plotting variable sensitivities

Sensitivities are a useful way to evaluate the tradeoffs in your model, as well as what aspects of the model are driving the solution and should be examined. To help with this, GPkit has an automatic sensitivity plotting function that can be accessed as follows:

from gpkit.interactive.plotting import sensitivity_plot
sensitivity_plot(m)

Which produces the following plot:

[image: _images/sensitivities.png]

In this plot, steep lines that go up to the right are variables whose increase sharply increases (makes worse) the objective. Steep lines going down to the right are variables whose increase sharply decreases (improves) the objective.

Substitutions

Substitutions are a general-purpose way to change every instance of one variable into either a number or another variable.

Substituting into Posynomials, NomialArrays, and GPs

The examples below all use Posynomials and NomialArrays, but the syntax is identical for GPs (except when it comes to sweep variables).

adapted from t_sub.py / t_NomialSubs / test_Basic
from gpkit import Variable
x = Variable("x")
p = x**2
assert p.sub(x, 3) == 9
assert p.sub(x.varkeys["x"], 3) == 9
assert p.sub("x", 3) == 9

Here the variable x is being replaced with 3 in three ways: first by substituting for x directly, then by substituting for the VarKey("x"), then by substituting the string “x”. In all cases the substitution is understood as being with the VarKey: when a variable is passed in the VarKey is pulled out of it, and when a string is passed in it is used as an argument to the Posynomial’s varkeys dictionary.

Substituting multiple values

adapted from t_sub.py / t_NomialSubs / test_Vector
from gpkit import Variable, VectorVariable
x = Variable("x")
y = Variable("y")
z = VectorVariable(2, "z")
p = x*y*z
assert all(p.sub({x: 1, "y": 2}) == 2*z)
assert all(p.sub({x: 1, y: 2, "z": [1, 2]}) == z.sub(z, [2, 4]))

To substitute in multiple variables, pass them in as a dictionary where the keys are what will be replaced and values are what it will be replaced with. Note that you can also substitute for VectorVariables by their name or by their NomialArray.

Substituting with nonnumeric values

You can also substitute in sweep variables (see Sweeps), strings, and monomials:

adapted from t_sub.py / t_NomialSubs
from gpkit import Variable
from gpkit.small_scripts import mag

x = Variable("x", "m")
xvk = x.varkeys.values()[0]
descr_before = x.exp.keys()[0].descr
y = Variable("y", "km")
yvk = y.varkeys.values()[0]
for x_ in ["x", xvk, x]:
 for y_ in ["y", yvk, y]:
 if not isinstance(y_, str) and type(xvk.units) != str:
 expected = 0.001
 else:
 expected = 1.0
 assert abs(expected - mag(x.sub(x_, y_).c)) < 1e-6
if type(xvk.units) != str:
 # this means units are enabled
 z = Variable("z", "s")
 # y.sub(y, z) will raise ValueError due to unit mismatch

Note that units are preserved, and that the value can be either a string (in which case it just renames the variable), a varkey (in which case it changes its description, including the name) or a Monomial (in which case it substitutes for the variable with a new monomial).

Substituting with replacement

Any of the substitutions above can be run with p.sub(*args, replace=True) to clobber any previously-substitued values.

Fixed Variables

When a Model is created, any fixed Variables are used to form a dictionary: {var: var.descr["value"] for var in self.varlocs if "value" in var.descr}. This dictionary in then substituted into the Model’s cost and constraints before the substitutions argument is (and hence values are supplanted by any later substitutions).

solution.subinto(p) will substitute the solution(s) for variables into the posynomial p, returning a NomialArray. For a non-swept solution, this is equivalent to p.sub(solution["variables"]).

You can also substitute by just calling the solution, i.e. solution(p). This returns a numpy array of just the coefficients (c) of the posynomial after substitution, and will raise a` ValueError` if some of the variables in p were not found in solution.

Freeing Fixed Variables

After creating a Model, it may be useful to “free” a fixed variable and resolve. This can be done using the command del m.substitutions["x"], where m is a Model. An example of how to do this is shown below.

from gpkit import Variable, Model
x = Variable("x")
y = Variable("y", 3) # fix value to 3
m = Model(x, [x >= 1 + y, y >= 1])
_ = m.solve() # optimal cost is 4; y appears in Constants

del m.substitutions["y"]
_ = m.solve() # optimal cost is 2; y appears in Free Variables

Note that del m.substitutions["y"] affects m but not y.key.
y.value will still be 3, and if y is used in a new model,
it will still carry the value of 3.

Sweeps

Declaring Sweeps

Sweeps are useful for analyzing tradeoff surfaces. A sweep “value” is an Iterable of numbers, e.g. [1, 2, 3]. Variables are swept when their substitution value takes the form ('sweep', Iterable), (e.g. 'sweep', np.linspace(1e6, 1e7, 100)). During variable declaration, giving an Iterable value for a Variable is assumed to be giving it a sweeep value: for example, x = Variable("x", [1, 2, 3]. Sweeps can also be declared during later substitution (gp.sub("x", ('sweep', [1, 2, 3])), or if the variable was already substituted for a constant, gp.sub("x", ('sweep', [1, 2, 3]), replace=True)).

Solving Sweeps

A Model with sweeps will solve for all possible combinations: e.g., if there’s a variable x with value ('sweep', [1, 3]) and a variable y with value ('sweep', [14, 17]) then the gp will be solved four times, for \((x,y)\in\left\{(1, 14),\ (1, 17),\ (3, 14),\ (3, 17)\right\}\). The returned solutions will be a one-dimensional array (or 2-D for vector variables), accessed in the usual way.
Sweeping Vector Variables

Vector variables may also be substituted for: y = VectorVariable(3, "y", value=('sweep' ,[[1, 2], [1, 2], [1, 2]]) will sweep \(y\ \forall~y_i\in\left\{1,2\right\}\).

Parallel Sweeps

During a normal sweep, each result is independent, so they can be run in parallel. To use this feature, run $ ipcluster start at a terminal: it will automatically start a number of iPython parallel computing engines equal to the number of cores on your machine, and when you next import gpkit you should see a note like Using parallel execution of sweeps on 4 clients. If you do, then all sweeps performed with that import of gpkit will be parallelized.

This parallelization sets the stage for gpkit solves to be outsourced to a server, which may be valuable for faster results; alternately, it could allow the use of gpkit without installing a solver.

Linked Sweeps

Some constants may be “linked” to another sweep variable. This can be represented by a Variable whose value is ('sweep', fn), where the arguments of the function fn are stored in the Varkeys’s args attribute. If you declare a variables value to be a function, then it will assume you meant that as a sweep value: for example, a_ = gpkit.Variable("a_", lambda a: 1-a, "-", args=[a]) will create a constant whose value is always 1 minus the value of a (valid for values of a less than 1). Note that this declaration requires the variable a to already have been declared.

Example Usage

code from t_GPSubs.test_VectorSweep in tests/t_sub.py
from gpkit import Variable, VectorVariable, Model

x = Variable("x")
y = VectorVariable(2, "y")
m = Model(x, [x >= y.prod()])
m.substitutions.update({y: ('sweep', [[2, 3], [5, 7, 11]])})
a = m.solve(printing=False)["cost"]
b = [10, 14, 22, 15, 21, 33]
assert all(abs(a-b)/(a+b) < 1e-7)

Composite Objectives

Given \(n\) posynomial objectives \(g_i\), you can sweep out the problem’s Pareto frontier with the composite objective:

\(g_0 w_0 \prod_{i\not=0} v_i + g_1 w_1 \prod_{i\not=1} v_i + ... + g_n \prod_i v_i\)

where \(i \in 0 ... n-1\) and \(v_i = 1- w_i\) and \(w_i \in [0, 1]\)

GPkit has the helper function composite_objective for constructing these.

Example Usage

import numpy as np
import gpkit

L, W = gpkit.Variable("L"), gpkit.Variable("W")

eqns = [L >= 1, W >= 1, L*W == 10]

co_sweep = [0] + np.logspace(-6, 0, 10).tolist()

obj = gpkit.tools.composite_objective(L+W, W**-1 * L**-3,
 normsub={L:10, W: 10},
 sweep=co_sweep)

m = gpkit.Model(obj, eqns)
m.solve()

The normsub argument specifies an expected value for your solution to normalize the different \(g_i\) (you can also do this by hand). The feasibility of the problem should not depend on the normalization, but the spacing of the sweep will.

The sweep argument specifies what points between 0 and 1 you wish to sample the weights at. If you want different resolutions or spacings for different weights, the sweeps argument accepts a list of sweep arrays.

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

Signomial Programming

Signomial programming finds a local solution to a problem of the form:

\[\begin{split}\begin{array}{lll}\text{}
\text{minimize} & g_0(x) & \\
\text{subject to} & f_i(x) = 1, & i = 1,....,m \\
 & g_i(x) - h_i(x) \leq 1, & i = 1,....,n
 \end{array}\end{split}\]

where each \(f\) is monomial while each \(g\) and \(h\) is a posynomial.

This requires multiple solutions of geometric programs, and so will take longer to solve than an equivalent geometric programming formulation.

The specification of a signomial problem can affect its solve time in a nuanced way: gpkit.SP(x, [x >= 0.1, x+y >= 1, y <= 0.1]).localsolve() takes about twice as long to solve with cvxopt as gpkit.SP(x, [x >= 1-y, y <= 0.1]).localsolve(), despite the two formulations being arithmetically equivalent and taking the same number of iterations.

In general, when given the choice of which variables to include in the positive-posynomial / \(g\) side of the constraint, the modeler should:

	maximize the number of variables in \(g\),

	prioritize variables that are in the objective,

	then prioritize variables that are present in other constraints.

The syntax SP.localsolve is chosen to emphasize that signomial programming returns a local optimum. For the same reason, calling SP.solve will raise an error.

By default, signomial programs are first solved conservatively (by assuming each \(h\) is equal only to its constant portion) and then become less conservative on each iteration.

Example Usage

"""Adapted from t_SP in tests/t_geometric_program.py"""
import gpkit

Decision variables
x = gpkit.Variable('x')
y = gpkit.Variable('y')

must enable signomials for subtraction
with gpkit.SignomialsEnabled():
 constraints = [x >= 1-y, y <= 0.1]

create and solve the SP
m = gpkit.Model(x, constraints)
sol = m.localsolve(verbosity=1)
assert abs(sol(x) - 0.9) < 1e-6

When using the localsolve method, the reltol argument specifies the relative tolerance of the solver: that is, by what percent does the solution have to improve between iterations? If any iteration improves less than that amount, the solver stops and returns its value.

If you wish to start the local optimization at a particular point \(x_k\), however, you may do so by putting that position (a dictionary formatted as you would a substitution) as the xk argument.

Calling to External Codes

For some applications, it is useful to call external codes which may not be GP compatible. Imagine we wished to solve the following optimization problem:

\[\begin{split}\begin{array}{lll}\text{}
\text{minimize} & y & \\
\text{subject to} & y \geq \sin(x) \\
 & \frac{\pi}{4} \leq x \leq \frac{\pi}{2}
 \end{array}\end{split}\]

This problem is not GP compatible due to the sin(x) constraint. One approach might be to take the first term of the Taylor expansion of sin(x) and attempt to solve:

"Can be found in gpkit/docs/source/examples/sin_approx_example.py"
import numpy as np
from gpkit import Variable, Model

x = Variable("x")
y = Variable("y")

objective = y

constraints = [y >= x,
 x <= np.pi/2.,
 x >= np.pi/4.,
]

m = Model(objective, constraints)
sol = m.solve(verbosity=1)

Cost

 0.7854

Free Variables

x : 0.7854
y : 0.7854

We can do better, however, by utilizing some built in functionality of GPkit. Assume we have some external code which is capable of evaluating our incompatible function:

"""External function for GPkit to call. Can be found
in gpkit/docs/source/examples/external_function.py"""
import numpy as np

def external_code(x):
 "Returns sin(x)"
 return np.sin(x)

Now, we can create a ConstraintSet that allows GPkit to treat the incompatible constraint as though it were a signomial programming constraint:

"Can be found in gpkit/docs/source/examples/external_constraint.py"
from gpkit import ConstraintSet
from external_function import external_code

class ExternalConstraint(ConstraintSet):
 "Class for external calling"
 # Overloading the __init__ function here permits the constraint class to be
 # called more cleanly at the top level GP.
 def __init__(self, x, y, **kwargs):

 # Calls the ConstriantSet __init__ function
 super(ExternalConstraint, self).__init__([], **kwargs)

 # We need a GPkit variable defined to return in our constraint. The
 # easiest way to do this is to read in the parameters of interest in
 # the initiation of the class and store them here.
 self.x = x
 self.y = y

 # Prevents the ExternalConstraint class from solving in a GP, thus forcing
 # iteration
 def as_posyslt1(self):
 raise TypeError("ExternalConstraint Model cannot solve as a GP.")

 # Returns the ExternalConstraint class as a GP compatible constraint when
 # requested by the GPkit solver
 def as_gpconstr(self, x0):

 # Unpacking the GPkit variables
 x = self.x
 y = self.y

 # Creating a default constraint for the first solve
 if not x0:
 return (y >= x)

 # Returns constraint updated with new call to the external code
 else:
 # Unpack Design Variables at the current point
 x_star = x0["x"]

 # Call external code
 res = external_code(x_star)

 # Return linearized constraint
 return (y >= res*x/x_star)

and replace the incompatible constraint in our GP:

"Can be found in gpkit/docs/source/examples/external_sp.py"

import numpy as np
from gpkit import Variable, Model
from external_constraint import ExternalConstraint

x = Variable("x")
y = Variable("y")

objective = y

constraints = [ExternalConstraint(x, y),
 x <= np.pi/2.,
 x >= np.pi/4.,
]

m = Model(objective, constraints)
sol = m.localsolve(verbosity=1)

Cost

 0.7071

Free Variables

x : 0.7854
y : 0.7071

which is the expected result. This method has been generalized to larger problems, such as calling XFOIL and AVL.

If you wish to start the local optimization at a particular point \(x_0\), however, you may do so by putting that position (a dictionary formatted as you would a substitution) as the x0 argument

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

Examples

iPython Notebook Examples

More examples, including some with in-depth explanations and interactive visualizations, can be seen on nbviewer [http://nbviewer.ipython.org/github/hoburg/gpkit/tree/master/docs/source/ipynb/].

A Trivial GP

The most trivial GP we can think of:
minimize \(x\) subject to the constraint \(x \ge 1\).

"Very simple problem: minimize x while keeping x greater than 1."
from gpkit import Variable, Model

Decision variable
x = Variable('x')

Constraint
constraints = [x >= 1]

Objective (to minimize)
objective = x

Formulate the Model
m = Model(objective, constraints)

Solve the Model
sol = m.solve(verbosity=0)

print selected results
print("Optimal cost: %s" % sol['cost'])
print("Optimal x val: %s" % sol(x))

Of course, the optimal value is 1. Output:

Optimal cost: 1.0
Optimal x val: 1.0

Maximizing the Volume of a Box

This example comes from Section 2.4 of the GP tutorial [http://stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf], by S. Boyd et. al.

"Maximizes box volume given area and aspect ratio constraints."
from gpkit import Variable, Model

Parameters
alpha = Variable("alpha", 2, "-", "lower limit, wall aspect ratio")
beta = Variable("beta", 10, "-", "upper limit, wall aspect ratio")
gamma = Variable("gamma", 2, "-", "lower limit, floor aspect ratio")
delta = Variable("delta", 10, "-", "upper limit, floor aspect ratio")
A_wall = Variable("A_{wall}", 200, "m^2", "upper limit, wall area")
A_floor = Variable("A_{floor}", 50, "m^2", "upper limit, floor area")

Decision variables
h = Variable("h", "m", "height")
w = Variable("w", "m", "width")
d = Variable("d", "m", "depth")

#Constraints
constraints = [A_wall >= 2*h*w + 2*h*d,
 A_floor >= w*d,
 h/w >= alpha,
 h/w <= beta,
 d/w >= gamma,
 d/w <= delta]

#Objective function
V = h*w*d
objective = 1/V # To maximize V, we minimize its reciprocal

Formulate the Model
m = Model(objective, constraints)

Solve the Model and print the results table
sol = m.solve(verbosity=1)

The output is

Cost

 0.003674 [1/m**3]

Free Variables

d : 8.17 [m] depth
h : 8.163 [m] height
w : 4.081 [m] width

Constants

A_{floor} : 50 [m**2] upper limit, floor area
 A_{wall} : 200 [m**2] upper limit, wall area
 alpha : 2 lower limit, wall aspect ratio
 beta : 10 upper limit, wall aspect ratio
 delta : 10 upper limit, floor aspect ratio
 gamma : 2 lower limit, floor aspect ratio

Sensitivities

 alpha : 0.5 lower limit, wall aspect ratio
A_{wall} : -1.5 upper limit, wall area

Water Tank

Say we had a fixed mass of water we wanted to contain within a tank, but also wanted to minimize the cost of the material we had to purchase (i.e. the surface area of the tank):

"Minimizes cylindrical tank surface area for a particular volume."
from gpkit import Variable, VectorVariable, Model

M = Variable("M", 100, "kg", "Mass of Water in the Tank")
rho = Variable("\\rho", 1000, "kg/m^3", "Density of Water in the Tank")
A = Variable("A", "m^2", "Surface Area of the Tank")
V = Variable("V", "m^3", "Volume of the Tank")
d = VectorVariable(3, "d", "m", "Dimension Vector")

constraints = (A >= 2*(d[0]*d[1] + d[0]*d[2] + d[1]*d[2]),
 V == d[0]*d[1]*d[2],
 M == V*rho)

m = Model(A, constraints)
sol = m.solve(verbosity=1)

The output is

Cost

 1.293 [m**2]

Free Variables

 A : 1.293 [m**2] Surface Area of the Tank
 V : 0.1 [m**3] Volume of the Tank
\vec{d} : [0.464 0.464 0.464] [m] Dimension Vector

Constants

 M : 100 [kg] Mass of Water in the Tank
\rho : 1000 [kg/m**3] Density of Water in the Tank

Sensitivities

 M : 0.6667 Mass of Water in the Tank
\rho : -0.6667 Density of Water in the Tank

Simple Wing

This example comes from Section 3 of Geometric Programming for Aircraft Design Optimization [http://web.mit.edu/~whoburg/www/papers/hoburgabbeel2014.pdf], by W. Hoburg and P. Abbeel.

"Minimizes airplane drag for a simple drag and structure model."
import numpy as np
from gpkit import Variable, Model

Constants
k = Variable("k", 1.2, "-", "form factor")
e = Variable("e", 0.95, "-", "Oswald efficiency factor")
mu = Variable("\\mu", 1.78e-5, "kg/m/s", "viscosity of air")
pi = Variable("\\pi", np.pi, "-", "half of the circle constant")
rho = Variable("\\rho", 1.23, "kg/m^3", "density of air")
tau = Variable("\\tau", 0.12, "-", "airfoil thickness to chord ratio")
N_ult = Variable("N_{ult}", 3.8, "-", "ultimate load factor")
V_min = Variable("V_{min}", 22, "m/s", "takeoff speed")
C_Lmax = Variable("C_{L,max}", 1.5, "-", "max CL with flaps down")
S_wetratio = Variable("(\\frac{S}{S_{wet}})", 2.05, "-", "wetted area ratio")
W_W_coeff1 = Variable("W_{W_{coeff1}}", 8.71e-5, "1/m",
 "Wing Weight Coefficent 1")
W_W_coeff2 = Variable("W_{W_{coeff2}}", 45.24, "Pa",
 "Wing Weight Coefficent 2")
CDA0 = Variable("(CDA0)", 0.031, "m^2", "fuselage drag area")
W_0 = Variable("W_0", 4940.0, "N", "aircraft weight excluding wing")

Free Variables
D = Variable("D", "N", "total drag force")
A = Variable("A", "-", "aspect ratio")
S = Variable("S", "m^2", "total wing area")
V = Variable("V", "m/s", "cruising speed")
W = Variable("W", "N", "total aircraft weight")
Re = Variable("Re", "-", "Reynold's number")
C_D = Variable("C_D", "-", "Drag coefficient of wing")
C_L = Variable("C_L", "-", "Lift coefficent of wing")
C_f = Variable("C_f", "-", "skin friction coefficient")
W_w = Variable("W_w", "N", "wing weight")

constraints = []

Drag model
C_D_fuse = CDA0/S
C_D_wpar = k*C_f*S_wetratio
C_D_ind = C_L**2/(pi*A*e)
constraints += [C_D >= C_D_fuse + C_D_wpar + C_D_ind]

Wing weight model
W_w_strc = W_W_coeff1*(N_ult*A**1.5*(W_0*W*S)**0.5)/tau
W_w_surf = W_W_coeff2 * S
constraints += [W_w >= W_w_surf + W_w_strc]

and the rest of the models
constraints += [D >= 0.5*rho*S*C_D*V**2,
 Re <= (rho/mu)*V*(S/A)**0.5,
 C_f >= 0.074/Re**0.2,
 W <= 0.5*rho*S*C_L*V**2,
 W <= 0.5*rho*S*C_Lmax*V_min**2,
 W >= W_0 + W_w]

print("SINGLE\n======")
m = Model(D, constraints)
sol = m.solve(verbosity=1)

print("SWEEP\n=====")
N = 2
sweeps = {V_min: ("sweep", np.linspace(20, 25, N)),
 V: ("sweep", np.linspace(45, 55, N)), }
m.substitutions.update(sweeps)
m.solve(verbosity=1)

The output is

SINGLE
======

Cost

 303.1 [N]

Free Variables

 A : 8.46 aspect ratio
C_D : 0.02059 Drag coefficient of wing
C_L : 0.4988 Lift coefficent of wing
C_f : 0.003599 skin friction coefficient
 D : 303.1 [N] total drag force
 Re : 3.675e+06 Reynold's number
 S : 16.44 [m**2] total wing area
 V : 38.15 [m/s] cruising speed
 W : 7341 [N] total aircraft weight
W_w : 2401 [N] wing weight

Constants

 (CDA0) : 0.031 [m**2] fuselage drag area
(\frac{S}{S_{wet}}) : 2.05 wetted area ratio
 C_{L,max} : 1.5 max CL with flaps down
 N_{ult} : 3.8 ultimate load factor
 V_{min} : 22 [m/s] takeoff speed
 W_0 : 4940 [N] aircraft weight excluding wing
 W_{W_{coeff1}} : 8.71e-05 [1/m] Wing Weight Coefficent 1
 W_{W_{coeff2}} : 45.24 [Pa] Wing Weight Coefficent 2
 \mu : 1.78e-05 [kg/m/s] viscosity of air
 \pi : 3.142 half of the circle constant
 \rho : 1.23 [kg/m**3] density of air
 \tau : 0.12 airfoil thickness to chord ratio
 e : 0.95 Oswald efficiency factor
 k : 1.2 form factor

Sensitivities

 W_0 : 1.011 aircraft weight excluding wing
 k : 0.4299 form factor
(\frac{S}{S_{wet}}) : 0.4299 wetted area ratio
 W_{W_{coeff1}} : 0.2903 Wing Weight Coefficent 1
 N_{ult} : 0.2903 ultimate load factor
 W_{W_{coeff2}} : 0.1303 Wing Weight Coefficent 2
 (CDA0) : 0.09156 fuselage drag area
 \mu : 0.08599 viscosity of air
 C_{L,max} : -0.1839 max CL with flaps down
 \rho : -0.2269 density of air
 \tau : -0.2903 airfoil thickness to chord ratio
 V_{min} : -0.3678 takeoff speed
 e : -0.4785 Oswald efficiency factor
 \pi : -0.4785 half of the circle constant

SWEEP
=====

Cost

 [338 294 396 326] [N]

Sweep Variables

 V : [45 45 55 55] [m/s] cruising speed
V_{min} : [20 25 20 25] [m/s] takeoff speed

Free Variables

 A : [6.2 8.84 4.77 7.16] aspect ratio
C_D : [0.0146 0.0196 0.0123 0.0157] Drag coefficient of wing
C_L : [0.296 0.463 0.198 0.31] Lift coefficent of wing
C_f : [0.00333 0.00361 0.00314 0.00342] skin friction coefficient
 D : [338 294 396 326] [N] total drag force
 Re : [5.38e+06 3.63e+06 7.24e+06 4.75e+06] Reynold's number
 S : [18.6 12.1 17.3 11.2] [m**2] total wing area
 W : [6.85e+03 6.97e+03 6.4e+03 6.44e+03] [N] total aircraft weight
W_w : [1.91e+03 2.03e+03 1.46e+03 1.5e+03] [N] wing weight

Constants

 (CDA0) : 0.031 [m**2] fuselage drag area
(\frac{S}{S_{wet}}) : 2.05 wetted area ratio
 C_{L,max} : 1.5 max CL with flaps down
 N_{ult} : 3.8 ultimate load factor
 W_0 : 4940 [N] aircraft weight excluding wing
 W_{W_{coeff1}} : 8.71e-05 [1/m] Wing Weight Coefficent 1
 W_{W_{coeff2}} : 45.24 [Pa] Wing Weight Coefficent 2
 \mu : 1.78e-05 [kg/m/s] viscosity of air
 \pi : 3.142 half of the circle constant
 \rho : 1.23 [kg/m**3] density of air
 \tau : 0.12 airfoil thickness to chord ratio
 e : 0.95 Oswald efficiency factor
 k : 1.2 form factor

Sensitivities

 W_0 : [0.919 0.947 0.845 0.847] aircraft weight excluding wing
 V : [0.589 0.249 0.975 0.746] cruising speed
 k : [0.561 0.454 0.63 0.536] form factor
(\frac{S}{S_{wet}}) : [0.561 0.454 0.63 0.536] wetted area ratio
 W_{W_{coeff1}} : [0.179 0.247 0.108 0.155] Wing Weight Coefficent 1
 N_{ult} : [0.179 0.247 0.108 0.155] ultimate load factor
 (CDA0) : [0.114 0.131 0.146 0.177] fuselage drag area
 W_{W_{coeff2}} : [0.141 0.0911 0.126 0.0787] Wing Weight Coefficent 2
 \mu : [0.112 0.0907 0.126 0.107] viscosity of air
 \rho : [-0.172 -0.129 -0.097 -0.0331] density of air
 \tau : [-0.179 -0.247 -0.108 -0.155] airfoil thickness to chord ratio
 e : [-0.325 -0.415 -0.225 -0.287] Oswald efficiency factor
 \pi : [-0.325 -0.415 -0.225 -0.287] half of the circle constant
 C_{L,max} : [-0.411 -0.207 -0.521 -0.353] max CL with flaps down
 V_{min} : [-0.822 -0.415 -1.04 -0.705] takeoff speed

Simple Beam

In this example we consider a beam subjected to a uniformly distributed transverse force along its length. The beam has fixed geometry so we are not optimizing its shape, rather we are simply solving a discretization of the Euler-Bernoulli beam bending equations using GP.

"""
A simple beam example with fixed geometry. Solves the discretized
Euler-Bernoulli beam equations for a constant distributed load
"""
import numpy as np
from gpkit import Variable, VectorVariable, Model, units
from gpkit.small_scripts import mag

class Beam(Model):
 """Discretization of the Euler beam equations for a distributed load.

 Arguments

 N : int
 Number of finite elements that compose the beam.
 L : float
 [m] Length of beam.
 EI : float
 [N m^2] Elastic modulus times cross-section's area moment of inertia.
 q : float or N-vector of floats
 [N/m] Loading density: can be specified as constants or as an array.
 """
 def __init__(self, N=4, **kwargs):
 EI = Variable("EI", 1e4, "N*m^2")
 dx = Variable("dx", "m", "Length of an element")
 L = Variable("L", 5, "m", "Overall beam length")
 q = VectorVariable(N, "q", 100*np.ones(N), "N/m",
 "Distributed load at each point")
 V = VectorVariable(N, "V", "N", "Internal shear")
 V_tip = Variable("V_{tip}", 0, "N", "Tip loading")
 M = VectorVariable(N, "M", "N*m", "Internal moment")
 M_tip = Variable("M_{tip}", 0, "N*m", "Tip moment")
 th = VectorVariable(N, "\\theta", "-", "Slope")
 th_base = Variable("\\theta_{base}", 0, "-", "Base angle")
 w = VectorVariable(N, "w", "m", "Displacement")
 w_base = Variable("w_{base}", 0, "m", "Base deflection")
 # below: trapezoidal integration to form a piecewise-linear
 # approximation of loading, shear, and so on
 # shear and moment increase from tip to base (left > right)
 shear_eq = (V >= V.right + 0.5*dx*(q + q.right))
 shear_eq[-1] = (V[-1] >= V_tip) # tip boundary condition
 moment_eq = (M >= M.right + 0.5*dx*(V + V.right))
 moment_eq[-1] = (M[-1] >= M_tip)
 # slope and displacement increase from base to tip (right > left)
 theta_eq = (th >= th.left + 0.5*dx*(M + M.left)/EI)
 theta_eq[0] = (th[0] >= th_base) # base boundary condition
 displ_eq = (w >= w.left + 0.5*dx*(th + th.left))
 displ_eq[0] = (w[0] >= w_base)
 # minimize tip displacement (the last w)
 Model.__init__(self, w[-1],
 [shear_eq, moment_eq, theta_eq, displ_eq,
 L == (N-1)*dx], **kwargs)

b = Beam(N=6, substitutions={"L": 6, "EI": 1.1e4, "q": 110*np.ones(10)})
b.zero_lower_unbounded_variables()
sol = b.solve(verbosity=1)
w_gp = sol("w") # deflection along beam

L, EI, q = sol("L"), sol("EI"), sol("q")
x = np.linspace(0, mag(L), len(q))*units.m # position along beam
q = q[0] # assume uniform loading for the check below
w_exact = q/(24.*EI) * x**2 * (x**2 - 4*L*x + 6*L**2) # analytic soln

assert max(abs(w_gp - w_exact)) <= 1e-2*units.m

PLOT = False
if PLOT:
 import matplotlib.pyplot as plt
 x_exact = np.linspace(0, L, 1000)
 w_exact = q/(24.*EI) * x_exact**2 * (x_exact**2 - 4*L*x_exact + 6*L**2)
 plt.plot(x, w_gp, color='red', linestyle='solid', marker='^',
 markersize=8)
 plt.plot(x_exact, w_exact, color='blue', linestyle='dashed')
 plt.xlabel('x [m]')
 plt.ylabel('Deflection [m]')
 plt.axis('equal')
 plt.legend(['GP solution', 'Analytical solution'])
 plt.show()

The output is

Cost

 1.62 [m]

Free Variables

 dx : 1.2 [m] Length of an element
 \vec{M} : [1.98e+03 1.27e+03 713 317 ...] [N*m] Internal moment
 \vec{V} : [660 528 396 264 ...] [N] Internal shear
\vec{\theta} : [- 0.177 0.285 0.341 ...] Slope
 \vec{w} : [- 0.106 0.384 0.759 ...] [m] Displacement

Constants

 EI : 1.1e+04 [N*m**2]
 L : 6 [m] Overall beam length
 M_{tip} : 0 [N*m] Tip moment
 V_{tip} : 0 [N] Tip loading
\theta_{base} : 0 Base angle
 w_{base} : 0 [m] Base deflection
 \vec{M} : [- - - - ...] [N*m] Internal moment
 \vec{V} : [- - - - ...] [N] Internal shear
 \vec{\theta} : [0 - - - ...] Slope
 \vec{q} : [110 110 110 110 ...] [N/m] Distributed load at each point
 \vec{w} : [0 - - - ...] [m] Displacement

Sensitivities

 L : 4 Overall beam length
\vec{q} : [0.0072 0.0416 0.118 0.234 ...] Distributed load at each point
 EI : -1

By plotting the deflection, we can see that the agreement between the analytical solution and the GP solution is good.

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

Glossary

For an alphabetical listing of all commands, check out the Index

gpkit package

Subpackages

	gpkit.constraints package
	Submodules

	gpkit.constraints.array module

	gpkit.constraints.costed module

	gpkit.constraints.linked module

	gpkit.constraints.model module

	gpkit.constraints.prog_factories module

	gpkit.constraints.set module

	gpkit.constraints.signomial_program module

	gpkit.constraints.single_equation module

	gpkit.constraints.tight module

	Module contents

	gpkit.interactive package
	Submodules

	gpkit.interactive.chartjs module

	gpkit.interactive.plotting module

	gpkit.interactive.ractor module

	gpkit.interactive.sensitivity_map module

	gpkit.interactive.widgets module

	Module contents

	gpkit.nomials package
	Submodules

	gpkit.nomials.array module

	gpkit.nomials.data module

	gpkit.nomials.nomial_core module

	gpkit.nomials.nomial_math module

	gpkit.nomials.substitution module

	gpkit.nomials.variables module

	Module contents

	gpkit.tests package
	Submodules

	gpkit.tests.helpers module

	gpkit.tests.run_tests module

	gpkit.tests.t_constraints module

	gpkit.tests.t_examples module

	gpkit.tests.t_keydict module

	gpkit.tests.t_model module

	gpkit.tests.t_nomial_array module

	gpkit.tests.t_nomials module

	gpkit.tests.t_small module

	gpkit.tests.t_solution_array module

	gpkit.tests.t_sub module

	gpkit.tests.t_tools module

	gpkit.tests.t_vars module

	Module contents

	gpkit.tools package
	Submodules

	gpkit.tools.fmincon module

	gpkit.tools.simpleflight module

	gpkit.tools.tools module

	Module contents

Submodules

gpkit.build module

gpkit.feasibility module

gpkit.geometric_program module

gpkit.keydict module

gpkit.modified_ctypesgen module

gpkit.repr_conventions module

gpkit.small_classes module

gpkit.small_scripts module

gpkit.solution_array module

gpkit.varkey module

Module contents

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

 	Glossary

gpkit.constraints package

Submodules

gpkit.constraints.array module

gpkit.constraints.costed module

gpkit.constraints.linked module

gpkit.constraints.model module

gpkit.constraints.prog_factories module

gpkit.constraints.set module

gpkit.constraints.signomial_program module

gpkit.constraints.single_equation module

gpkit.constraints.tight module

Module contents

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

 	Glossary

gpkit.interactive package

Submodules

gpkit.interactive.chartjs module

gpkit.interactive.plotting module

gpkit.interactive.ractor module

gpkit.interactive.sensitivity_map module

gpkit.interactive.widgets module

Module contents

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

 	Glossary

gpkit.nomials package

Submodules

gpkit.nomials.array module

gpkit.nomials.data module

gpkit.nomials.nomial_core module

gpkit.nomials.nomial_math module

gpkit.nomials.substitution module

gpkit.nomials.variables module

Module contents

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

 	Glossary

gpkit.tests package

Submodules

gpkit.tests.helpers module

gpkit.tests.run_tests module

gpkit.tests.t_constraints module

gpkit.tests.t_examples module

gpkit.tests.t_keydict module

gpkit.tests.t_model module

gpkit.tests.t_nomial_array module

gpkit.tests.t_nomials module

gpkit.tests.t_small module

gpkit.tests.t_solution_array module

gpkit.tests.t_sub module

gpkit.tests.t_tools module

gpkit.tests.t_vars module

Module contents

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

 	Glossary

gpkit.tools package

Submodules

gpkit.tools.fmincon module

gpkit.tools.simpleflight module

gpkit.tools.tools module

Module contents

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

Citing GPkit

If you use GPkit, please cite it with the following bibtex:

@Misc{gpkit,
 author={Edward Burnell and Warren Hoburg},
 title={GPkit software for geometric programming},
 howpublished={\url{https://github.com/hoburg/gpkit}},
 year={2015},
 note={Version 0.4.0}
 }

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gpkit 0.4.0 documentation

Acknowledgements

We thank the following contributors for helping to improve GPkit:

	Marshall Galbraith for setting up continuous integration.

	Stephen Boyd [http://stanford.edu/~boyd/] for inspiration and suggestions.

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	gpkit 0.4.0 documentation

Release Notes

This page lists the changes made in each point version of gpkit.

Version 0.4

	New model for considering constraints: all constraints are considered as sets of constraints which may contain other constraints, and are asked for their substitutions / posynomial less than 1 representation as late as possible.

	Support for calling external code during an SP solve.

	New class KeyDict to allow referring to variables by name or with objects.

	Many many other bug fixes, speed ups, and refactors under the hood.

Version 0.3

	Integrated GP and SP creation under the Model class

	Improved and simplified under-the-hood internals of GPs and SPs

	New experimental SP heuristic

	Improved test coverage

	Handles vectors which are partially constants, partially free

	Simplified interaction with Model objects and made it more pythonic

	Added SP “step” method to allow single-stepping through an SP

	Isolated and corrected some solver-specific behavior

	Fully allowed substitutions of variables for 0 (commit 4631255)

	Use “with” to create a signomials environment (commit cd8d581)

	Continuous integration improvements, thanks @galbramc !

	Not counting subpackages, went from 2200 to 2400 lines of code (additions were mostly longer error messages) and from 650 to 1050 lines of docstrings and comments.

	Add automatic feasibility-analysis methods to Model and GP

	Simplified solver logging and printing, making it easier to access solver output.

Version 0.2

	Various bug fixes

	Python 3 compatibility

	Added signomial programming support (alpha quality, may be wrong)

	Added composite objectives

	Parallelized sweeping

	Better table printing

	Linked sweep variables

	Better error messages

	Closest feasible point capability

	Improved install process (no longer requires ctypesgen; auto-detects MOSEK version)

	Added examples: wind turbine, modular GP, examples from 1967 book, maintenance (part replacement)

	Documentation grew by ~70%

	Added Advanced Commands section to documentation

	Many additional unit tests (more than doubled testing lines of code)

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	gpkit 0.4.0 documentation

Index

 Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

 _images/Fuel_17_2.png
/

; °
: NN [
: N g
; SR @
~ ~ —
~ ~ i
o N ~ m
: ~
O ~ R
el N —
s N N v
~ ~ ~ ~ E
™ - o~ R =
< N S PR
‘ < “t%
- ~ o~ S8
[N NN ~ . E
N <~ ~ =
i = -~ N
LLLLNS SN NN NN ol
LOUNUNS IS Y ~ > o~ b
SOUUURRAR I Y NES NN A
RIS NSO NN o N
NN Y SN RN
RSN e R
RRSTISANS NN NN Tism
RN NN JIIINY ~
RQESERE NN TIIIR NN
RN R SN NN NN
ORI - 4 S N S
RSN ~
G NN <
,//////JN R R 33
P < N N N
A N NN
SNNAVA AR R R L o
SRRRERT R NNV IiNo
m
-3
|
|
[
|
|
¢
|
|
\-
|
|
—
T
1
<
m

TYANATVR Y VTN

AN

/////”///////”////ﬁ/i:f RERRRAN!

LA I LT LA A v
”,//////////////é?‘/‘//ﬁ?ﬂ/zﬁw/ﬁ‘f PA-b AL AL
R N S A AR R AR AR
R S N O R R A AR AR R A

AASNAN

46

41

V_{stall,max} [m/s] Stall speed

S{\rho_{alum}}

30

1e+06 |

i
o
(=]
¥
Q
m

6e+06 |

©
(=]
¥
Q
@

abuel suejdiie wnwiuiy [w] {ulw} ™y

V_{stall,max} [m/s] Stall speed

_images/Fuel_17_1.png

_static/up.png

_images/gplogo.png

_images/sensitivities.png
Approx. % change in cost

10

h_(ruely

\eta_v, \eta_{eng}

R_tmin}

05

00

10,

_(frea)

V. (sprintreqt)
\ho_{alum}. f_{wadd}, N_{iit}

\mu, o
v \Sigma_{maxshear),
4 (pro}

C (Lmax}, o (s}
\gra. (max}

\pi e, V_{stallmax}

4%

00
% change

05

To

_images/Fuel_17_0.png

_static/down.png

ipynb/Box/Box.html

 Navigation

 		
 index

 		gpkit 0.4.0 documentation »

[image:]

BOX

Maximize volume while limiting the aspect ratios and area of the
sides.

This is a simple demonstration of
gpkit [http://www.github.com/convexopt/gpkit], based on an example
from A Tutorial on Geometric
Programming [http://stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf] by
Boyd et al..

Set up the modelling environment

First we’ll to import GPkit and turn on \(\LaTeX\) printing for
GPkit variables and equations.

import gpkit
import gpkit.interactive
gpkit.interactive.init_printing()

Now we declare the optimisation parameters:

alpha = gpkit.Variable("\\alpha", 2, "-", "lower limit, wall aspect ratio")
beta = gpkit.Variable("\\beta", 10, "-", "upper limit, wall aspect ratio")
gamma = gpkit.Variable("\\gamma", 2, "-", "lower limit, floor aspect ratio")
delta = gpkit.Variable("\\delta", 10, "-", "upper limit, floor aspect ratio")
A_wall = gpkit.Variable("A_{wall}", 200, "m^2", "upper limit, wall area")
A_floor = gpkit.Variable("A_{floor}", 50, "m^2", "upper limit, floor area")

Next, we declare the decision variables:

var = gpkit.Variable # a convenient shorthand

h = var("h", "m", "height")
w = var("w", "m", "width")
d = var("d", "m", "depth")

Then we form equations of the system:

V = h*w*d
constraints = [A_wall >= 2*h*w + 2*h*d,
 A_floor >= w*d,
 h/w >= alpha,
 h/w <= beta,
 d/w >= gamma,
 d/w <= delta]

Formulate the optimisation problem

Here we write the optimisation problem as a standard form geometric
program. Note that by putting \(\tfrac{1}{V}\) as our cost function,
we are maximizing \(V\).

gp = gpkit.GP(1/V, constraints)

Now we can check that our equations are correct by using the built-in
latex printing.

gp

\[\begin{split}\begin{array}[ll]
\text{}
\text{minimize}
 & \frac{1}{d h w}\mathrm{\left[\tfrac{1}{m^{3}} \right]} \\
\text{subject to}
 & A_{wall} \geq 2d h + 2h w \\
 & A_{floor} \geq d w \\
 & \alpha \leq \frac{h}{w} \\
 & \beta \geq \frac{h}{w} \\
 & \gamma \leq \frac{d}{w} \\
 & \delta \geq \frac{d}{w} \\
\text{substituting}
 & A_{floor} = 50 \\
 & A_{wall} = 200 \\
 & \alpha = 2 \\
 & \beta = 10 \\
 & \delta = 10 \\
 & \gamma = 2 \\
\end{array}\end{split}\]

That looks fine, but let’s change \(A_{floor}\) to \(100\), just
for fun.

Note that replace=True will be needed, since \(A_{floor}\) has
already been substituted in.

gp.sub(A_floor, 100, replace=True) # (var, val) substitution syntax

And heck, why not change \(\alpha\) and \(\gamma\) to \(1\)
while we’re at it?

gp.sub({alpha: 1, gamma: 1}, replace=True) # ({var1: val1, var2: val2}) substitution syntax

Now check that those changes took:

gp

\[\begin{split}\begin{array}[ll]
\text{}
\text{minimize}
 & \frac{1}{d h w}\mathrm{\left[\tfrac{1}{m^{3}} \right]} \\
\text{subject to}
 & A_{wall} \geq 2d h + 2h w \\
 & A_{floor} \geq d w \\
 & \alpha \leq \frac{h}{w} \\
 & \beta \geq \frac{h}{w} \\
 & \gamma \leq \frac{d}{w} \\
 & \delta \geq \frac{d}{w} \\
\text{substituting}
 & A_{floor} = 100 \\
 & A_{wall} = 200 \\
 & \alpha = 1 \\
 & \beta = 10 \\
 & \delta = 10 \\
 & \gamma = 1 \\
\end{array}\end{split}\]

Looks good!

Solve the GP

sol = gp.solve()

Using solver 'cvxopt'
Solving took 0.0184 seconds

Analyse results

print sol.table()

0.0025981 : Cost
 | Free variables
 d : 11.5 [m] depth
 h : 5.77 [m] height
 w : 5.77 [m] width
 |
 | Constants
A_{floor} : 100 [m**2] upper limit, floor area
 A_{wall} : 200 [m**2] upper limit, wall area
 alpha : 1 [-] lower limit, wall aspect ratio
 beta : 10 [-] upper limit, wall aspect ratio
 delta : 10 [-] upper limit, floor aspect ratio
 gamma : 1 [-] lower limit, floor aspect ratio
 |
 | Constant sensitivities
 A_{wall} : -1.5 [-] upper limit, wall area
 alpha : 0.5 [-] lower limit, wall aspect ratio
 |

Hmm, why didn’t \(A_{floor}\) show up in the sensitivities list?

sol.sens(A_floor)

-3.4698494246624108e-09

Its sensitivity is tiny; changing it near this value doesn’t affect the
cost at all; that constraint is loose! Let’s sweep over a range of
\(A_{floor}\) values to figure out where it becomes loose.

Sweep and plot results

Import the plotting library matplotlib and the math library numpy:

%matplotlib inline
%config InlineBackend.figure_format = 'retina' # for high-DPI displays
import matplotlib.pyplot as plt
import numpy as np

Solve for values of \(A_{floor}\) from 10 to 100 using a “sweep”
substitution:

gp.sub(A_floor, ('sweep', np.linspace(10, 100, 50)), replace=True)
sol = gp.solve()
print sol.table()

Using solver 'cvxopt'
Sweeping 1 variables over 50 passes
Solving took 0.547 seconds
 0.0032211 : Cost (average of 50 values)
 | Free variables (average)
 d : 8.33 [m] depth
 h : 7.74 [m] height
 w : 5.69 [m] width
 |
 | Constants (average)
 A_{floor} : 55 [m**2] upper limit, floor area
 A_{wall} : 200 [m**2] upper limit, wall area
 alpha : 1 [-] lower limit, wall aspect ratio
 beta : 10 [-] upper limit, wall aspect ratio
 delta : 10 [-] upper limit, floor aspect ratio
 gamma : 1 [-] lower limit, floor aspect ratio
 |
 | Constant sensitivities (average)
 A_{floor} : -0.274 [-] upper limit, floor area
 A_{wall} : -1.23 [-] upper limit, wall area
 alpha : 0.226 [-] lower limit, wall aspect ratio
 |

It seems we got some sensitivity out of \(A_{floor}\) on average
over these points; let’s plot it:

plt.plot(sol(A_floor), sol(d), linewidth=1, alpha=0.5)
plt.plot(sol(A_floor), sol(h), linewidth=1, alpha=0.5)
plt.plot(sol(A_floor), sol(w), '--', linewidth=2, alpha=0.5)
plt.legend(['depth', 'height', 'width'])
plt.ylabel("Optimal dimensions [m]")
_ = plt.xlabel("A_floor [m^2]") # the _ catches the returned label object, since we don't need it

[image: ../../_images/Box_34_0.png]
There’s an interesting elbow when
\(A_{floor} \approx 50 \mathrm{\ m^2}\).

Interactive analysis

Let’s investigate it with the
cadtoons [https://github.com/bqpd/cadtoons] library. Running
cadtoon.py box.svg in this folder creates an interactive SVG graphic
for us.

First, import the functions to display HTML in iPython Notebook, and the
ractivejs [http://www.ractivejs.org/] library.

from IPython.display import HTML, display
from string import Template

Then write controls that link the optimization to the animation. It’s
generally very helpful to play around with with writing constraints in
the cadtoons sandbox before copying the javascript code
from there to iPython.

ractor = Template("""
var w = $w/10,
 h = $h/10,
 d = $d/10""")

def ractorfn(sol):
 return ractor.substitute(w=sol(w), d=sol(d), h=sol(h))

constraints="""
var dw = 50*(w-1),
 dh = 50*(h-1),
 dd = 50*(d-1)

r.plan.scalex = w
r.plan.scaley = d

r.top.scalex = w
r.top.scaley = h
r.top.y = -dh -dd
r.bottom.scalex = w
r.bottom.scaley = h
r.bottom.y = dh + dd

r.left.scalex = h
r.left.scaley = d
r.left.x = -dh - dw
r.right.scalex = h
r.right.scaley = d
r.right.x = dh + dw """

def ractivefn(gp):
 sol = gp.solution
 live = "<script>" + ractorfn(sol) + constraints + "</script>"
 display(HTML(live))
 # if you enable the line below, you can try navigating the sliders by sensitivities
 # print sol.table(["cost", "sensitivities"])

Now that the display window has been created, let’s use an iPython
widget to explore the “design space” of our box. This widget runs the
gpkit solver every time a slider is changed, so you only solve the
points you see.

with open("box.gpkit", 'r') as file:
 display(HTML(file.read()))
display(HTML(display(HTML("<style> #ractivecontainer"
 "{position:absolute; height: 0;"
 "right: 0; top: 5em;} </style>"))))

 <IPython.core.display.HTML at 0x7fd2dce97850>

gpkit.interactive.widget(gp, ractivefn, {
 "A_{floor}": (10, 1000, 10), "A_{wall}": (10, 1000, 10),
 "\\delta": (0.1, 20, 0.1), "\\gamma": (0.1, 20, 0.1),
 "\\alpha": (0.1, 20, 0.1), "\\beta": (0.1, 20, 0.1), })

Now that we’ve found a good range to explore, we’ll make and interactive
javascript widget that presolves all options and works in a iPython
notebook hosted by nbviewer [http://nbviewer.ipython.org/].

gpkit.interactive.jswidget(gp, ractorfn, constraints, {
 "A_{floor}": (10, 100, 10), "A_{wall}": (10, 210, 20),
 "\\delta": (1, 10, 3), "\\gamma": (1, 10, 3),
 "\\alpha": (1, 10, 3), "\\beta": (1, 10, 3), })

This concludes the Box example. Try playing around with the sliders up
above until you’re bored of this simple system; then check out one of
the other examples. Thanks for reading!

Import CSS for nbviewer

If you have a local iPython stylesheet installed, this will add it to
the iPython Notebook:

from IPython import utils
from IPython.core.display import HTML
import os
def css_styling():
 """Load default custom.css file from ipython profile"""
 base = utils.path.get_ipython_dir()
 styles = ("<style>\n%s\n</style>" %
 open(os.path.join(base,'profile_default/static/custom/custom.css'),'r').read())
 return HTML(styles)
css_styling()

 © Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

_static/comment-close.png

ipynb/Fuel/Fuel.html

 Navigation

 		
 index

 		gpkit 0.4.0 documentation »

[image:]

AIRPLANE FUEL

Minimize fuel needed for a plane that can sprint and land quickly.

Set up the modelling environment

First we’ll to import GPkit and turn on \(\LaTeX\) printing for
GPkit variables and equations.

import numpy as np
import gpkit
import gpkit.interactive
gpkit.interactive.init_printing()

declare constants

mon = gpkit.Variable
vec = gpkit.VectorVariable

N_lift = mon("N_{lift}", 6.0, "-", "Wing loading multiplier")
pi = mon("\\pi", np.pi, "-", "Half of the circle constant")
sigma_max = mon("\\sigma_{max}", 250e6, "Pa", "Allowable stress, 6061-T6")
sigma_maxshear = mon("\\sigma_{max,shear}", 167e6, "Pa", "Allowable shear stress")
g = mon("g", 9.8, "m/s^2", "Gravitational constant")
w = mon("w", 0.5, "-", "Wing-box width/chord")
r_h = mon("r_h", 0.75, "-", "Wing strut taper parameter")
f_wadd = mon("f_{wadd}", 2, "-", "Wing added weight fraction")
W_fixed = mon("W_{fixed}", 14.7e3, "N", "Fixed weight")
C_Lmax = mon("C_{L,max}", 1.5, "-", "Maximum C_L, flaps down")
rho = mon("\\rho", 0.91, "kg/m^3", "Air density, 3000m")
rho_sl = mon("\\rho_{sl}", 1.23, "kg/m^3", "Air density, sea level")
rho_alum = mon("\\rho_{alum}", 2700, "kg/m^3", "Density of aluminum")
mu = mon("\\mu", 1.69e-5, "kg/m/s", "Dynamic viscosity, 3000m")
e = mon("e", 0.95, "-", "Wing spanwise efficiency")
A_prop = mon("A_{prop}", 0.785, "m^2", "Propeller disk area")
eta_eng = mon("\\eta_{eng}", 0.35, "-", "Engine efficiency")
eta_v = mon("\\eta_v", 0.85, "-", "Propeller viscous efficiency")
h_fuel = mon("h_{fuel}", 42e6, "J/kg", "fuel heating value")
V_sprint_reqt = mon("V_{sprintreqt}", 150, "m/s", "sprint speed requirement")
W_pay = mon("W_{pay}", 500*9.81, "N")
R_min = mon("R_{min}", 1e6, "m", "Minimum airplane range")
V_stallmax = mon("V_{stall,max}", 40, "m/s", "Stall speed")
sweep variables
R_min = mon("R_{min}", np.linspace(1e6, 1e7, 10), "m", "Minimum airplane range")
V_stallmax = mon("V_{stall,max}", np.linspace(30, 50, 10), "m/s", "Stall speed")

declare free variables

V = vec(3, "V", "m/s", "Flight speed")
C_L = vec(3, "C_L", "-", "Wing lift coefficent")
C_D = vec(3, "C_D", "-", "Wing drag coefficent")
C_Dfuse = vec(3, "C_{D_{fuse}}", "-", "Fuselage drag coefficent")
C_Dp = vec(3, "C_{D_p}", "-", "drag model parameter")
C_Di = vec(3, "C_{D_i}", "-", "drag model parameter")
T = vec(3, "T", "N", "Thrust force")
Re = vec(3, "Re", "-", "Reynold's number")
W = vec(3, "W", "N", "Aircraft weight")
eta_i = vec(3, "\\eta_i", "-", "Aircraft efficiency")
eta_prop = vec(3, "\\eta_{prop}", "-")
eta_0 = vec(3, "\\eta_0", "-")
W_fuel = vec(2, "W_{fuel}", "N", "Fuel weight")
z_bre = vec(2, "z_{bre}", "-")
S = mon("S", "m^2", "Wing area")
R = mon("R", "m", "Airplane range")
A = mon("A", "-", "Aspect Ratio")
I_cap = mon("I_{cap}", "m^4", "Spar cap area moment of inertia per unit chord")
M_rbar = mon("\\bar{M}_r", "-")
P_max = mon("P_{max}", "W")
V_stall = mon("V_{stall}", "m/s")
nu = mon("\\nu", "-")
p = mon("p", "-")
q = mon("q", "-")
tau = mon("\\tau", "-")
t_cap = mon("t_{cap}", "-")
t_web = mon("t_{web}", "-")
W_cap = mon("W_{cap}", "N")
W_zfw = mon("W_{zfw}", "N", "Zero fuel weight")
W_eng = mon("W_{eng}", "N")
W_mto = mon("W_{mto}", "N", "Maximum takeoff weight")
W_pay = mon("W_{pay}", "N")
W_tw = mon("W_{tw}", "N")
W_web = mon("W_{web}", "N")
W_wing = mon("W_{wing}", "N")

Let’s check that the vector constraints are working:

W == 0.5*rho*C_L*S*V**2

\[\begin{split}\begin{bmatrix}{W}_{0} = 0.5S \rho {V}_{0}^{2} {C_L}_{0} & {W}_{1} = 0.5S \rho {V}_{1}^{2} {C_L}_{1} & {W}_{2} = 0.5S \rho {V}_{2}^{2} {C_L}_{2}\end{bmatrix}\end{split}\]

Looks good!

Form the optimization problem

In the 3-element vector variables, indexs 0, 1, and 2 are the outbound,
return and sprint flights.

steady_level_flight = (W == 0.5*rho*C_L*S*V**2,
 T >= 0.5*rho*C_D*S*V**2,
 Re == (rho/mu)*V*(S/A)**0.5)

landing_fc = (W_mto <= 0.5*rho_sl*V_stall**2*C_Lmax*S,
 V_stall <= V_stallmax)

sprint_fc = (P_max >= T[2]*V[2]/eta_0[2],
 V[2] >= V_sprint_reqt)

drag_model = (C_D >= (0.05/S)*gpkit.units.m**2 +C_Dp + C_L**2/(pi*e*A),
 1 >= (2.56*C_L**5.88/(Re**1.54*tau**3.32*C_Dp**2.62) +
 3.8e-9*tau**6.23/(C_L**0.92*Re**1.38*C_Dp**9.57) +
 2.2e-3*Re**0.14*tau**0.033/(C_L**0.01*C_Dp**0.73) +
 1.19e4*C_L**9.78*tau**1.76/(Re*C_Dp**0.91) +
 6.14e-6*C_L**6.53/(Re**0.99*tau**0.52*C_Dp**5.19)))

propulsive_efficiency = (eta_0 <= eta_eng*eta_prop,
 eta_prop <= eta_i*eta_v,
 4*eta_i + T*eta_i**2/(0.5*rho*V**2*A_prop) <= 4)

4th order taylor approximation for e^x
z_bre_sum = 0
for i in range(1,5):
 z_bre_sum += z_bre**i/np.math.factorial(i)

range_constraints = (R >= R_min,
 z_bre >= g*R*T[:2]/(h_fuel*eta_0[:2]*W[:2]),
 W_fuel/W[:2] >= z_bre_sum)

weight_relations = (W_pay >= 500*g*gpkit.units.kg,
 W_tw >= W_fixed + W_pay + W_eng,
 W_zfw >= W_tw + W_wing,
 W_eng >= 0.0372*P_max**0.8083 * gpkit.units.parse_expression('N/W^0.8083'),
 W_wing/f_wadd >= W_cap + W_web,
 W[0] >= W_zfw + W_fuel[1],
 W[1] >= W_zfw,
 W_mto >= W[0] + W_fuel[0],
 W[2] == W[0])

wing_structural_model = (2*q >= 1 + p,
 p >= 1.9,
 tau <= 0.15,
 M_rbar >= W_tw*A*p/(24*gpkit.units.N),
 .92**2/2.*w*tau**2*t_cap >= I_cap * gpkit.units.m**-4 + .92*w*tau*t_cap**2,
 8 >= N_lift*M_rbar*A*q**2*tau/S/I_cap/sigma_max * gpkit.units.parse_expression('Pa*m**6'),
 12 >= A*W_tw*N_lift*q**2/tau/S/t_web/sigma_maxshear,
 nu**3.94 >= .86*p**-2.38 + .14*p**0.56,
 W_cap >= 8*rho_alum*g*w*t_cap*S**1.5*nu/3/A**.5,
 W_web >= 8*rho_alum*g*r_h*tau*t_web*S**1.5*nu/3/A**.5
)

eqns = (weight_relations + range_constraints + propulsive_efficiency
 + drag_model + steady_level_flight + landing_fc + sprint_fc + wing_structural_model)

gp = gpkit.GP(W_fuel.sum(), eqns)

Design a hundred airplanes

sol = gp.solve()

Using solver 'cvxopt'
Sweeping 2 variables over 100 passes
Solving took 9.96 seconds

The “local model” is the power-law tangent to the Pareto frontier,
gleaned from sensitivities.

sol["local_model"][0].sub(gp.substitutions)

\[0.006484\frac{R_{min}}{V_{stall,max}^{0.59}}\]

plot design frontiers

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

plot_frontiers = gpkit.interactive.plot_frontiers
plot_frontiers(gp, [V[0], V[1], V[2]])
plot_frontiers(gp, [S, W_zfw, P_max])
plot_frontiers(gp, ['S{\\rho_{alum}}', 'S{h_{fuel}}', 'S{A_{prop}}'])

[image: ../../_images/Fuel_17_0.png]
[image: ../../_images/Fuel_17_1.png]
[image: ../../_images/Fuel_17_2.png]

Interactive analysis

Let’s investigate it with the
cadtoons [https://github.com/bqpd/cadtoons] library. Running
cadtoon.py flightconditions.svg in this folder creates an
interactive SVG graphic for us.

First, import the functions to display HTML in iPython Notebook, and the
ractivejs [http://www.ractivejs.org/] library.

from IPython.display import HTML, display
from string import Template

ractor = Template("""
var W_eng = $W_eng,
 lam = $lam

r.shearinner.scalex = 1-$tcap*10
r.shearinner.scaley = 1-$tweb*100
r.airfoil.scaley = $tau/0.13
r.fuse.scalex = $W_fus/24000
r.wing.scalex = $b/2/14
r.wing.scaley = $cr*1.21
""")

def ractorfn(sol):
 return ractor.substitute(lam = 0.5*(sol(p) - 1),
 b = sol((S*A)**0.5),
 cr = sol(2/(1+0.5*(sol(p) - 1))*(S/A)**0.5),
 tcap = sol(t_cap/tau),
 tweb = sol(t_web/w),
 tau = sol(tau),
 W_eng = sol(W_eng),
 W_fus = sol(W_mto) - sol(W_wing) - sol(W_eng))

constraints = """
r.engine1.scale = Math.pow(W_eng/3000, 2/3)
r.engine2.scale = Math.pow(W_eng/3000, 2/3)
r.engine1.y = 6*lam
r.engine2.y = 6*lam
r.wingrect.scaley = 1-lam
r.wingrect.y = -6 + 5*lam
r.wingtaper.scaley = lam
r.wingtaper.y = 5*lam
"""

def ractivefn(gp):
 sol = gp.solution
 live = "<script>" + ractorfn(sol) + constraints + "</script>"
 display(HTML(live))
 # if you enable the line below, you can try navigating the sliders by sensitivities
 # print sol.table(["cost", "sensitivities"])

with open("flightconditions.gpkit", 'r') as file:
 display(HTML(file.read()))
display(HTML("<style> #ractivecontainer"
 "{position:absolute; height: 0;"
 "right: 0; top: -6em;} </style>"))

 gpkit.interactive.widget(gp, ractivefn,
 {"V_{stall,max}": (20, 50, 1),
 "R_{min}": (1e6, 1e7, 0.5e6)})

gpkit.interactive.jswidget(gp, ractorfn,
 constraints,
 {"V_{stall,max}": (20, 50, 3),
 "R_{min}": (1e6, 1e7, 1e6)})

This concludes the Box example. Try playing around with the sliders up
above until you’re bored of this system; then check out one of the other
examples. Thanks for reading!

Import CSS for nbviewer

If you have a local iPython stylesheet installed, this will add it to
the iPython Notebook:

from IPython import utils
from IPython.core.display import HTML
import os
def css_styling():
 """Load default custom.css file from ipython profile"""
 base = utils.path.get_ipython_dir()
 styles = "<style>\n%s\n</style>" % (open(os.path.join(base,'profile_default/static/custom/custom.css'),'r').read())
 return HTML(styles)
css_styling()

 © Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_images/inheritance.png
Signomial

Posynomial

Monomial

Variable &

_static/ajax-loader.gif

_images/solvemethods.png
Model

solve() localsolve()

T &

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		gpkit 0.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

autodoc/modules.html

 Navigation

 		
 index

 		gpkit 0.4.0 documentation »

gpkit

		Glossary
		gpkit package
		Subpackages
		gpkit.constraints package

		gpkit.interactive package

		gpkit.nomials package

		gpkit.tests package

		gpkit.tools package

		Submodules

		gpkit.build module

		gpkit.feasibility module

		gpkit.geometric_program module

		gpkit.keydict module

		gpkit.modified_ctypesgen module

		gpkit.repr_conventions module

		gpkit.small_classes module

		gpkit.small_scripts module

		gpkit.solution_array module

		gpkit.varkey module

		Module contents

 © Copyright 2016 MIT Hoburg Research Group.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_static/file.png

_images/Box_34_0.png
Optimal dimensions [m]

-

=

20

30

40

.
50 60
A_floor [m"2]

70

80

_static/comment-bright.png

