
gpkit Documentation
Release 0.4.0

MIT Department of Aeronautics and Astronautics

June 07, 2016

Contents

1 Geometric Programming 101 3
1.1 What is a GP? . 3
1.2 Why are GPs special? . 4
1.3 What are Signomials / Signomial Programs? . 4
1.4 Where can I learn more? . 4

2 GPkit Overview 5
2.1 Symbolic expressions . 5
2.2 Substitution . 5
2.3 Model objects . 5

3 Installation Instructions 9
3.1 Install dependencies . 9
3.2 Install a GP solver . 10
3.3 Install GPkit . 11
3.4 Debugging installation . 11
3.5 Updating GPkit between releases . 12

4 Getting Started 13
4.1 Declaring Variables . 13
4.2 Creating Monomials and Posynomials . 14
4.3 Declaring Constraints . 14
4.4 Formulating a Model . 14
4.5 Solving the Model . 15
4.6 Printing Results . 15
4.7 Sensitivities and dual variables . 15

5 Advanced Commands 17
5.1 Feasibility Analysis . 17
5.2 Plotting variable sensitivities . 17
5.3 Substitutions . 18
5.4 Sweeps . 20
5.5 Composite Objectives . 21

6 Signomial Programming 23
6.1 Example Usage . 23
6.2 Calling to External Codes . 24

7 Examples 27

i

7.1 iPython Notebook Examples . 27
7.2 A Trivial GP . 27
7.3 Maximizing the Volume of a Box . 28
7.4 Water Tank . 29
7.5 Simple Wing . 30
7.6 Simple Beam . 33

8 Glossary 37
8.1 gpkit package . 39

9 Citing GPkit 41

10 Acknowledgements 43

11 Release Notes 45
11.1 Version 0.4 . 45
11.2 Version 0.3 . 45
11.3 Version 0.2 . 46

ii

gpkit Documentation, Release 0.4.0

GPkit is a Python package for defining and manipulating geometric programming (GP) models, abstracting away the
backend solver. Supported solvers are MOSEK and CVXOPT.

Contents 1

http://mosek.com
http://cvxopt.org

gpkit Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Geometric Programming 101

1.1 What is a GP?

A Geometric Program (GP) is a type of non-linear optimization problem whose objective and constraints
have a particular form. The decision variables in a GP must have strictly positive values (that is, they can’t
be zero).

GP objectives and inequalities are formed out of monomials and posynomials. In the context of GP, a
monomial is defined as:

𝑓(𝑥) = 𝑐𝑥𝑎1
1 𝑥𝑎2

2 ...𝑥𝑎𝑛
𝑛

where 𝑐 is a positive constant, 𝑥1..𝑛 are decision variables, and 𝑎1..𝑛 are real exponents. For example,
taking 𝑥, 𝑦 and 𝑧 to be positive variables, the expressions

7𝑥 4𝑥𝑦2𝑧
2𝑥

𝑦2𝑧0.3

√︀
2𝑥𝑦

are all monomials. Building on this, a posynomial is defined as a sum of monomials:

𝑔(𝑥) =

𝐾∑︁
𝑘=1

𝑐𝑘𝑥
𝑎1𝑘
1 𝑥𝑎2𝑘

2 ...𝑥𝑎𝑛𝑘
𝑛

For example, the expressions

𝑥2 + 2𝑥𝑦 + 1 7𝑥𝑦 + 0.4(𝑦𝑧)−1/3 0.56 +
𝑥0.7

𝑦𝑧

are all posynomials. Alternatively, monomials can be defined as the subset of posynomials having only
one term. Using 𝑓𝑖 to represent a monomial and 𝑔𝑖 to represent a posynomial, a GP in standard form is
written as:

minimize 𝑔0(𝑥)
subject to 𝑓𝑖(𝑥) = 1, 𝑖 = 1,,𝑚

𝑔𝑖(𝑥) ≤ 1, 𝑖 = 1,, 𝑛

Boyd et. al. give the following example of a GP in standard form:

minimize 𝑥−1𝑦−1/2𝑧−1 + 2.3𝑥𝑧 + 4𝑥𝑦𝑧
subject to (1/3)𝑥−2𝑦−2 + (4/3)𝑦1/2𝑧−1 ≤ 1

𝑥+ 2𝑦 + 3𝑧 ≤ 1
(1/2)𝑥𝑦 = 1

3

gpkit Documentation, Release 0.4.0

1.2 Why are GPs special?

Geometric programs have several powerful properties:

1. Unlike most non-linear optimization problems, large GPs can be solved extremely quickly.

2. If there exists an optimal solution to a GP, it is guaranteed to be globally optimal.

3. Modern GP solvers require no initial guesses or tuning of solver parameters.

These properties arise because GPs become convex optimization problems via a logarithmic transforma-
tion. In addition to their mathematical benefits, recent research has shown that many practical problems
can be formulated as GPs or closely approximated as GPs.

1.3 What are Signomials / Signomial Programs?

When the coefficients in a posynomial are allowed to be negative (but the variables stay strictly positive),
that is called a Signomial. A Signomial Program has signomial constraints, and while they cannot be
solved as quickly or to global optima, because they build on the structure of a GP they can be solved more
quickly than a generic nonlinear program. More information on Signomial Programs can be found under
‘Advanced Commands‘_.

1.4 Where can I learn more?

To learn more about GPs, refer to the following resources:

• A tutorial on geometric programming, by S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi.

• Convex optimization, by S. Boyd and L. Vandenberghe.

• Geometric Programming for Aircraft Design Optimization, Hoburg, Abbeel 2014

4 Chapter 1. Geometric Programming 101

http://stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf
http://stanford.edu/~boyd/cvxbook/
http://web.mit.edu/~whoburg/www/papers/hoburgabbeel2014.pdf

CHAPTER 2

GPkit Overview

GPkit is a Python package for defining and manipulating geometric programming (GP) models, abstract-
ing away the backend solver.

The goal of GPkit is to make it easy to create, share, and explore geometric programming models, which
tends to align well with being fast and mathematically correct.

2.1 Symbolic expressions

GPkit is a limited symbolic algebra language, allowing only for the creation of geometric program com-
patible equations (or signomial program compatible ones, if signomial programming is enabled). As
mentioned in ‘Geometric Programming 101‘_, one can view monomials as posynomials with a single
term, and posynomials as signomials that have only positive coefficients. The inheritance structure of
these objects in GPkit follows this mathematical basis.

2.2 Substitution

The Varkey object in the graph above is not a algebraic expression, but what GPkit uses as a variable’s
“name”. It carries the LaTeX representation of a variable and its units, as well as any other information
the user wishes to associate with a variable. The use of VarKeys as opposed to numeric indexing is an
important part of the GPkit framework, because it allows a user to keep variable information local and
modular.

GPkit keeps its internal representation of objects entirely symbolic until it solves. This means that any
expression or Model object can replace any instance of a variable (as represented by a VarKey) with a
number, new VarKey, or even an entire Monomial at any time with the .sub() method.

2.3 Model objects

In GPkit, a Model object represents a symbolic problem declaration. That problem may be either GP-
compatible or SP-compatible. To avoid confusion, calling the solve() method on a model will either
attempt to solve it for a global optimum (if it’s a GP) or return an error immediately (if it’s an SP). Simi-
larly, calling localsolve() will either start the process of SP-solving (stepping through a sequence of
GP-approximations) or return an error for GP-compatible Models. This framework is illustrated below.

5

gpkit Documentation, Release 0.4.0

6 Chapter 2. GPkit Overview

gpkit Documentation, Release 0.4.0

2.3. Model objects 7

gpkit Documentation, Release 0.4.0

8 Chapter 2. GPkit Overview

CHAPTER 3

Installation Instructions

If you encounter bugs during installation email gpkit@mit.edu, or raise a new issue.

3.1 Install dependencies

GPkit’s dependencies are the python packages

• pip

• numpy version 1.8 or newer

• scipy

• pint

and at least one solver (which we will install in a later step).

There are many ways to install these dependencies. Below is one suggestion for how to do so.

3.1.1 Get pip

Mac OS X Run easy_install pip at a terminal window.

Linux

Use your package manager to install pip Ubuntu: sudo apt-get install
python-pip

Windows Do nothing at this step.

3.1.2 Get python packages

Mac OS X

Run the following commands:

• pip install pip --upgrade

• pip install numpy

• pip install scipy

• pip install pint

9

http://github.com/hoburg/gpkit/issues/new

gpkit Documentation, Release 0.4.0

Linux

Use your package manager to install numpy and scipy Ubuntu: sudo apt-get
install python-numpy python-scipy

Run pip install pint

Windows Do nothing at this step.

3.2 Install a GP solver

GPkit interfaces with two off the shelf solvers: cvxopt, and mosek. Cvxopt is open source; mosek requires
a commercial licence or (free) academic license.

At least one solver is required.

Unfortunately, on Windows, due to 32-bit vs 64 bit issues, we do not currently know of a way to install
both cvxopt and mosek simultaneously. If you are a Windows user, you should pick one solver or the
other. For Windows 10, cvxopt does not appear to be an option.

3.2.1 Installing cvxopt

Mac OSX and Linux Run pip install cvxopt

Windows If you are using Windows 10, stop. Go to Installing mosek.

Install the Python 2.7 version of Python (x,y) (note that Python (x,y) is 32-bit)

• Installing CVXOPT with Anaconda or another Python distribution can be difficult, which
is why we recommend Python (x,y).

• Python (x,y) recommends removing any previous installations of Python before installation.

• Be sure to click the cvxopt and pint check boxes under “Choose components” during in-
stallation.

3.2.2 Installing mosek

Note: if you do not have a paid license, you will need an academic or trial license to proceed.

Mac OS X

• If which gcc does not return anything, install XCode and the Apple Command Line Tools.

• Install cytypesgen via pip install ctypesgen --pre (gpkit uses ctypesgen to inter-
face with the MOSEK C bindings).

• Download MOSEK, then:

– Move the mosek folder to your home directory

– Follow these steps for Mac.

– Request an academic license file and put it in ~/mosek/

Linux

• Install cytypesgen via pip install ctypesgen --pre (gpkit uses ctypesgen to inter-
face with the MOSEK C bindings).

• Download MOSEK, then:

10 Chapter 3. Installation Instructions

https://python-xy.github.io/downloads.html
https://developer.apple.com/downloads/index.action?=command%20line%20tools
http://mosek.com/resources/downloads
http://docs.mosek.com/7.0/toolsinstall/Mac_OS_X_installation.html
http://license.mosek.com/academic
http://mosek.com/resources/downloads

gpkit Documentation, Release 0.4.0

– Move the mosek folder to your home directory

– Follow these steps for Linux.

– Request an academic license file and put it in ~/mosek/

Windows If you have a 32-bit version of Windows, stop. Go to Installing cvxopt.

• Install the 64-bit version of Anaconda.

• Install cytypesgen via pip install ctypesgen --pre (gpkit uses ctypesgen to inter-
face with the MOSEK C bindings).

• Download MOSEK, then:

– Follow these steps for Windows.

– Request an academic license file and put it in
C:\Users\(your_username)\mosek\

– Make sure gcc is on your system path.

* To do this, type gcc into a command prompt.

* If you get executable not found, then install the 64-bit version of mingw.

* Make sure the mingw bin directory is on your system path (you may have to add it
manually).

3.3 Install GPkit

• Run pip install gpkit at the command line.

• Run pip install ipywidgets for interactive control of models (recommended)

• Run python -c "import gpkit.tests; gpkit.tests.run()"

• Optional: to install gpkit into an isolated python environment, install virtualenv, run virtualenv
$DESTINATION_DIR then activate it with source $DESTINATION_DIR/bin/activate

3.4 Debugging installation

You may need to rebuild GPkit if any of the following occur:

• You install a new solver (mosek or cvxopt) after installing GPkit

• You delete the .gpkit folder from your home directory

• You see Could not load settings file.

• You see Could not load MOSEK library: ImportError(’$HOME/.gpkit/expopt.so
not found.’)

To rebuild GPkit, do the following:

• Run pip uninstall gpkit

• Run pip install --no-cache-dir --no-deps gpkit

• Run python -c "import gpkit.tests; gpkit.tests.run()"

• If any tests fail, email gpkit@mit.edu

3.3. Install GPkit 11

http://docs.mosek.com/7.0/toolsinstall/Linux_UNIX_installation_instructions.html
http://license.mosek.com/academic
http://www.continuum.io/downloads#_windows
http://mosek.com/resources/downloads
http://docs.mosek.com/7.0/toolsinstall/Windows_installation.html
http://license.mosek.com/academic
http://sourceforge.net/projects/mingw-w64/

gpkit Documentation, Release 0.4.0

3.5 Updating GPkit between releases

Active developers may wish to install the latest GPkit directly from the source code on Github. To do so,

1. Run pip uninstall gpkit to uninstall your existing GPkit.

2. Run git clone https://github.com/hoburg/gpkit.git to clone the GPkit reposi-
tory, or cd gpkit; git pull origin master; cd .. to update your existing reposi-
tory.

3. Run pip install -e gpkit to reinstall GPkit.

4. Run python -c "import gpkit.tests; gpkit.tests.run()" to test your installa-
tion.

12 Chapter 3. Installation Instructions

http://github.com/hoburg/gpkit

CHAPTER 4

Getting Started

GPkit is a Python package, so we assume basic familiarity with Python: if you’re new to Python we
recommend you take a look at Learn Python.

Alright: install GPkit and import away.

from gpkit import Variable, VectorVariable, Model

4.1 Declaring Variables

Instances of the Variable class represent scalar variables. They store a key (i.e. name) used to look up
the Variable in dictionaries, and optionally units, a description, and a value (if the Variable is to be held
constant).

4.1.1 Free Variables

Declare a variable, x
x = Variable("x")

Declare a variable, y, with units of meters
y = Variable("y", "m")

Declare a variable, z, with units of meters, and a description
z = Variable("z", "m", "A variable called z with units of meters")

4.1.2 Fixed Variables

To declare a variable with a constant value, use the Variable class, as above, but specify the value=
input argument:

Declare \rho equal to 1.225 kg/m^3.
NOTE: write a literal backslash by preceding it with another backslash
rho = Variable("\\rho", 1.225, "kg/m^3", "Density of air at sea level")

In the example above, the key name "\\rho" is for LaTeX printing (described later). The unit and
description arguments are optional.

#Declare pi equal to 3.14
pi = Variable("\\pi", 3.14)

13

http://www.learnpython.org

gpkit Documentation, Release 0.4.0

4.1.3 Vector Variables

Vector variables are represented by the VectorVariable class. The first argument is the length of the
vector. All other inputs follow those of the Variable class.

Declare a 3-element vector variable "x" with units of "m"
x = VectorVariable(3, "x", "m", "Cube corner coordinates")
x_min = VectorVariable(3, "x", [1, 2, 3], "m", "Cube corner minimum")

4.2 Creating Monomials and Posynomials

Monomial and posynomial expressions can be created using mathematical operations on variables.

create a Monomial term xy^2/z
x = Variable("x")
y = Variable("y")
z = Variable("z")
m = x * y**2 / z
type(m) # gpkit.nomials.Monomial

create a Posynomial expression x + xy^2
x = Variable("x")
y = Variable("y")
p = x + x * y**2
type(p) # gpkit.nomials.Posynomial

4.3 Declaring Constraints

Constraint objects represent constraints of the form Monomial >= Posynomial or Monomial
== Monomial (which are the forms required for GP-compatibility).

Note that constraints must be formed using <=, >=, or == operators, not < or >.

consider a block with dimensions x, y, z less than 1
constrain surface area less than 1.0 m^2
x = Variable("x", "m")
y = Variable("y", "m")
z = Variable("z", "m")
S = Variable("S", 1.0, "m^2")
c = (2*x*y + 2*x*z + 2*y*z <= S)
type(c) # gpkit.nomials.PosynomialInequality

4.4 Formulating a Model

The Model class represents an optimization problem. To create one, pass an objective and list of Con-
straints.

By convention, the objective is the function to be minimized. If you wish to maximize a function, take
its reciprocal. For example, the code below creates an objective which, when minimized, will maximize
x*y*z.

14 Chapter 4. Getting Started

gpkit Documentation, Release 0.4.0

objective = 1/(x*y*z)
constraints = [2*x*y + 2*x*z + 2*y*z <= S,

x >= 2*y]
m = Model(objective, constraints)

4.5 Solving the Model

When solving the model you can change the level of information that gets printed to the screen with the
verbosity setting. A verbosity of 1 (the default) prints warnings and the solution; a verbosity of 2
prints solve time, a verbosity of 3 prints solver output, and a verbosity of 0 prints nothing.

sol = m.solve(verbosity=0)

4.6 Printing Results

We can also manually print the solution table, with the same result as if the verbosity argument had been
left blank above.

print sol.table()

Cost

15.59 [1/m**3]

Free Variables

x : 0.5774 [m]
y : 0.2887 [m]
z : 0.3849 [m]

Constants

S : 1 [m**2]

Sensitivities

S : -1.5

print "The x dimension is %s." % (sol(x))

The x dimension is 0.577351209028 meter.

4.7 Sensitivities and dual variables

When a GP is solved, the solver returns not just the optimal value for the problem’s variables (known as
the “primal solution”) but also, as a side effect of the solving process, the effect that scaling the ≤ 1 of
each canonical constraint would have on the overall objective (the “dual solution”).

From the dual solution GPkit computes the sensitivities for every fixed variable in the problem. This can
be quite useful for seeing which constraints are most crucial, and prioritizing remodeling and assumption-
checking.

4.5. Solving the Model 15

gpkit Documentation, Release 0.4.0

4.7.1 Using variable sensitivities

Fixed variable sensitivities can be accessed most easily using a SolutionArray’s sens() method, as in
this example:

import gpkit
x = gpkit.Variable("x")
x_min = gpkit.Variable("x_{min}", 2)
sol = gpkit.Model(x, [x_min <= x]).solve()
assert sol.sens(x_min) == 1

These sensitivities are actually log derivatives (𝑑log(𝑦)𝑑log(𝑥)); whereas a regular derivative is a tangent line,
these are tangent monomials, so the 1 above indicates that x_min has a linear relation with the objective.
This is confirmed by a further example:

import gpkit
x = gpkit.Variable("x")
x_squared_min = gpkit.Variable("x^2_{min}", 2)
sol = gpkit.Model(x, [x_squared_min <= x**2]).solve()
assert sol.sens(x_squared_min) == 2

16 Chapter 4. Getting Started

CHAPTER 5

Advanced Commands

5.1 Feasibility Analysis

If your Model doesn’t solve, you can automatically find the nearest feasible version of it with the
Model.feasibility() command, as shown below. The feasible version can either involve relax-
ing all constraints by the smallest number possible (that is, dividing the less-than side of every constraint
by the same number), relaxing each constraint by its own number and minimizing the product of those
numbers, or changing each constant by the smallest total percentage possible.

from gpkit import Variable, Model, NomialArray
x = Variable("x")
x_min = Variable("x_min", 2)
x_max = Variable("x_max", 1)
m = Model(x, [x <= x_max, x >= x_min])
m.solve() # raises a RuntimeWarning!
feas = m.feasibility()

USING OVERALL
m.constraints = NomialArray(m.signomials)/feas["overall"]
m.solve()

USING CONSTRAINTS
m = Model(x, [x <= x_max, x >= x_min])
m.constraints = NomialArray(m.signomials)/feas["constraints"]
m.solve()

USING CONSTANTS
m = Model(x, [x <= x_max, x >= x_min])
m.substitutions.update(feas["constants"])
m.solve()

5.2 Plotting variable sensitivities

Sensitivities are a useful way to evaluate the tradeoffs in your model, as well as what aspects of the model
are driving the solution and should be examined. To help with this, GPkit has an automatic sensitivity
plotting function that can be accessed as follows:

from gpkit.interactive.plotting import sensitivity_plot
sensitivity_plot(m)

17

gpkit Documentation, Release 0.4.0

Which produces the following plot:

In this plot, steep lines that go up to the right are variables whose increase sharply increases (makes
worse) the objective. Steep lines going down to the right are variables whose increase sharply decreases
(improves) the objective.

5.3 Substitutions

Substitutions are a general-purpose way to change every instance of one variable into either a number or
another variable.

5.3.1 Substituting into Posynomials, NomialArrays, and GPs

The examples below all use Posynomials and NomialArrays, but the syntax is identical for GPs (except
when it comes to sweep variables).

adapted from t_sub.py / t_NomialSubs / test_Basic
from gpkit import Variable
x = Variable("x")
p = x**2
assert p.sub(x, 3) == 9
assert p.sub(x.varkeys["x"], 3) == 9
assert p.sub("x", 3) == 9

Here the variable x is being replaced with 3 in three ways: first by substituting for x directly, then by
substituting for the VarKey("x"), then by substituting the string “x”. In all cases the substitution is

18 Chapter 5. Advanced Commands

gpkit Documentation, Release 0.4.0

understood as being with the VarKey: when a variable is passed in the VarKey is pulled out of it, and
when a string is passed in it is used as an argument to the Posynomial’s varkeys dictionary.

5.3.2 Substituting multiple values

adapted from t_sub.py / t_NomialSubs / test_Vector
from gpkit import Variable, VectorVariable
x = Variable("x")
y = Variable("y")
z = VectorVariable(2, "z")
p = x*y*z
assert all(p.sub({x: 1, "y": 2}) == 2*z)
assert all(p.sub({x: 1, y: 2, "z": [1, 2]}) == z.sub(z, [2, 4]))

To substitute in multiple variables, pass them in as a dictionary where the keys are what will be replaced
and values are what it will be replaced with. Note that you can also substitute for VectorVariables by their
name or by their NomialArray.

5.3.3 Substituting with nonnumeric values

You can also substitute in sweep variables (see Sweeps), strings, and monomials:

adapted from t_sub.py / t_NomialSubs
from gpkit import Variable
from gpkit.small_scripts import mag

x = Variable("x", "m")
xvk = x.varkeys.values()[0]
descr_before = x.exp.keys()[0].descr
y = Variable("y", "km")
yvk = y.varkeys.values()[0]
for x_ in ["x", xvk, x]:

for y_ in ["y", yvk, y]:
if not isinstance(y_, str) and type(xvk.units) != str:

expected = 0.001
else:

expected = 1.0
assert abs(expected - mag(x.sub(x_, y_).c)) < 1e-6

if type(xvk.units) != str:
this means units are enabled
z = Variable("z", "s")
y.sub(y, z) will raise ValueError due to unit mismatch

Note that units are preserved, and that the value can be either a string (in which case it just renames the
variable), a varkey (in which case it changes its description, including the name) or a Monomial (in which
case it substitutes for the variable with a new monomial).

5.3.4 Substituting with replacement

Any of the substitutions above can be run with p.sub(*args, replace=True) to clobber any
previously-substitued values.

5.3. Substitutions 19

gpkit Documentation, Release 0.4.0

5.3.5 Fixed Variables

When a Model is created, any fixed Variables are used to form a dictionary: {var:
var.descr["value"] for var in self.varlocs if "value" in var.descr}.
This dictionary in then substituted into the Model’s cost and constraints before the substitutions
argument is (and hence values are supplanted by any later substitutions).

solution.subinto(p) will substitute the solution(s) for variables into the posynomial p, returning
a NomialArray. For a non-swept solution, this is equivalent to p.sub(solution["variables"]).

You can also substitute by just calling the solution, i.e. solution(p). This returns a numpy array of
just the coefficients (c) of the posynomial after substitution, and will raise a‘ ValueError‘ if some of
the variables in p were not found in solution.

5.3.6 Freeing Fixed Variables

After creating a Model, it may be useful to “free” a fixed variable and resolve. This can be done using
the command del m.substitutions["x"], where m is a Model. An example of how to do this is
shown below.

from gpkit import Variable, Model
x = Variable("x")
y = Variable("y", 3) # fix value to 3
m = Model(x, [x >= 1 + y, y >= 1])
_ = m.solve() # optimal cost is 4; y appears in Constants

del m.substitutions["y"]
_ = m.solve() # optimal cost is 2; y appears in Free Variables

Note that del m.substitutions["y"] affects m but not y.key. y.value will still be 3, and if
y is used in a new model, it will still carry the value of 3.

5.4 Sweeps

5.4.1 Declaring Sweeps

Sweeps are useful for analyzing tradeoff surfaces. A sweep “value” is an Iterable of numbers,
e.g. [1, 2, 3]. Variables are swept when their substitution value takes the form (’sweep’,
Iterable), (e.g. ’sweep’, np.linspace(1e6, 1e7, 100)). During variable dec-
laration, giving an Iterable value for a Variable is assumed to be giving it a sweeep value: for ex-
ample, x = Variable("x", [1, 2, 3]. Sweeps can also be declared during later substitution
(gp.sub("x", (’sweep’, [1, 2, 3])), or if the variable was already substituted for a con-
stant, gp.sub("x", (’sweep’, [1, 2, 3]), replace=True)).

5.4.2 Solving Sweeps

A Model with sweeps will solve for all possible combinations: e.g., if there’s a variable x with value
(’sweep’, [1, 3]) and a variable y with value (’sweep’, [14, 17]) then the gp will be
solved four times, for (𝑥, 𝑦) ∈ {(1, 14), (1, 17), (3, 14), (3, 17)}. The returned solutions will be a one-
dimensional array (or 2-D for vector variables), accessed in the usual way. Sweeping Vector Variables

Vector variables may also be substituted for: y = VectorVariable(3, "y",
value=(’sweep’ ,[[1, 2], [1, 2], [1, 2]]) will sweep 𝑦 ∀ 𝑦𝑖 ∈ {1, 2}.

20 Chapter 5. Advanced Commands

gpkit Documentation, Release 0.4.0

5.4.3 Parallel Sweeps

During a normal sweep, each result is independent, so they can be run in parallel. To use this feature, run
$ ipcluster start at a terminal: it will automatically start a number of iPython parallel computing
engines equal to the number of cores on your machine, and when you next import gpkit you should
see a note like Using parallel execution of sweeps on 4 clients. If you do, then all
sweeps performed with that import of gpkit will be parallelized.

This parallelization sets the stage for gpkit solves to be outsourced to a server, which may be valuable for
faster results; alternately, it could allow the use of gpkit without installing a solver.

5.4.4 Linked Sweeps

Some constants may be “linked” to another sweep variable. This can be represented by a Variable whose
value is (’sweep’, fn), where the arguments of the function fn are stored in the Varkeys’s args
attribute. If you declare a variables value to be a function, then it will assume you meant that as a sweep
value: for example, a_ = gpkit.Variable("a_", lambda a: 1-a, "-", args=[a])
will create a constant whose value is always 1 minus the value of a (valid for values of a less than 1). Note
that this declaration requires the variable a to already have been declared.

5.4.5 Example Usage

code from t_GPSubs.test_VectorSweep in tests/t_sub.py
from gpkit import Variable, VectorVariable, Model

x = Variable("x")
y = VectorVariable(2, "y")
m = Model(x, [x >= y.prod()])
m.substitutions.update({y: ('sweep', [[2, 3], [5, 7, 11]])})
a = m.solve(printing=False)["cost"]
b = [10, 14, 22, 15, 21, 33]
assert all(abs(a-b)/(a+b) < 1e-7)

5.5 Composite Objectives

Given 𝑛 posynomial objectives 𝑔𝑖, you can sweep out the problem’s Pareto frontier with the composite
objective:

𝑔0𝑤0

∏︀
𝑖 ̸=0 𝑣𝑖 + 𝑔1𝑤1

∏︀
�̸�=1 𝑣𝑖 + ...+ 𝑔𝑛

∏︀
𝑖 𝑣𝑖

where 𝑖 ∈ 0...𝑛− 1 and 𝑣𝑖 = 1− 𝑤𝑖 and 𝑤𝑖 ∈ [0, 1]

GPkit has the helper function composite_objective for constructing these.

5.5.1 Example Usage

import numpy as np
import gpkit

L, W = gpkit.Variable("L"), gpkit.Variable("W")

eqns = [L >= 1, W >= 1, L*W == 10]

5.5. Composite Objectives 21

gpkit Documentation, Release 0.4.0

co_sweep = [0] + np.logspace(-6, 0, 10).tolist()

obj = gpkit.tools.composite_objective(L+W, W**-1 * L**-3,
normsub={L:10, W: 10},
sweep=co_sweep)

m = gpkit.Model(obj, eqns)
m.solve()

The normsub argument specifies an expected value for your solution to normalize the different 𝑔𝑖 (you
can also do this by hand). The feasibility of the problem should not depend on the normalization, but the
spacing of the sweep will.

The sweep argument specifies what points between 0 and 1 you wish to sample the weights at. If you
want different resolutions or spacings for different weights, the sweeps argument accepts a list of sweep
arrays.

22 Chapter 5. Advanced Commands

CHAPTER 6

Signomial Programming

Signomial programming finds a local solution to a problem of the form:

minimize 𝑔0(𝑥)
subject to 𝑓𝑖(𝑥) = 1, 𝑖 = 1,,𝑚

𝑔𝑖(𝑥)− ℎ𝑖(𝑥) ≤ 1, 𝑖 = 1,, 𝑛

where each 𝑓 is monomial while each 𝑔 and ℎ is a posynomial.

This requires multiple solutions of geometric programs, and so will take longer to solve than an equivalent
geometric programming formulation.

The specification of a signomial problem can affect its solve time in a nuanced way: gpkit.SP(x, [x
>= 0.1, x+y >= 1, y <= 0.1]).localsolve() takes about twice as long to solve with cvx-
opt as gpkit.SP(x, [x >= 1-y, y <= 0.1]).localsolve(), despite the two formulations
being arithmetically equivalent and taking the same number of iterations.

In general, when given the choice of which variables to include in the positive-posynomial / 𝑔 side of the
constraint, the modeler should:

1. maximize the number of variables in 𝑔,

2. prioritize variables that are in the objective,

3. then prioritize variables that are present in other constraints.

The syntax SP.localsolve is chosen to emphasize that signomial programming returns a local opti-
mum. For the same reason, calling SP.solve will raise an error.

By default, signomial programs are first solved conservatively (by assuming each ℎ is equal only to its
constant portion) and then become less conservative on each iteration.

6.1 Example Usage

"""Adapted from t_SP in tests/t_geometric_program.py"""
import gpkit

Decision variables
x = gpkit.Variable('x')
y = gpkit.Variable('y')

must enable signomials for subtraction
with gpkit.SignomialsEnabled():

constraints = [x >= 1-y, y <= 0.1]

23

gpkit Documentation, Release 0.4.0

create and solve the SP
m = gpkit.Model(x, constraints)
sol = m.localsolve(verbosity=1)
assert abs(sol(x) - 0.9) < 1e-6

When using the localsolve method, the reltol argument specifies the relative tolerance of the
solver: that is, by what percent does the solution have to improve between iterations? If any iteration
improves less than that amount, the solver stops and returns its value.

If you wish to start the local optimization at a particular point 𝑥𝑘, however, you may do so by putting that
position (a dictionary formatted as you would a substitution) as the xk argument.

6.2 Calling to External Codes

For some applications, it is useful to call external codes which may not be GP compatible. Imagine we
wished to solve the following optimization problem:

minimize 𝑦
subject to 𝑦 ≥ sin(𝑥)

𝜋
4 ≤ 𝑥 ≤ 𝜋

2

This problem is not GP compatible due to the sin(x) constraint. One approach might be to take the first
term of the Taylor expansion of sin(x) and attempt to solve:

"Can be found in gpkit/docs/source/examples/sin_approx_example.py"
import numpy as np
from gpkit import Variable, Model

x = Variable("x")
y = Variable("y")

objective = y

constraints = [y >= x,
x <= np.pi/2.,
x >= np.pi/4.,

]

m = Model(objective, constraints)
sol = m.solve(verbosity=1)

Cost

0.7854

Free Variables

x : 0.7854
y : 0.7854

We can do better, however, by utilizing some built in functionality of GPkit. Assume we have some
external code which is capable of evaluating our incompatible function:

24 Chapter 6. Signomial Programming

gpkit Documentation, Release 0.4.0

"""External function for GPkit to call. Can be found
in gpkit/docs/source/examples/external_function.py"""
import numpy as np

def external_code(x):
"Returns sin(x)"
return np.sin(x)

Now, we can create a ConstraintSet that allows GPkit to treat the incompatible constraint as though it
were a signomial programming constraint:

"Can be found in gpkit/docs/source/examples/external_constraint.py"
from gpkit import ConstraintSet
from external_function import external_code

class ExternalConstraint(ConstraintSet):
"Class for external calling"
Overloading the __init__ function here permits the constraint class to be
called more cleanly at the top level GP.
def __init__(self, x, y, **kwargs):

Calls the ConstriantSet __init__ function
super(ExternalConstraint, self).__init__([], **kwargs)

We need a GPkit variable defined to return in our constraint. The
easiest way to do this is to read in the parameters of interest in
the initiation of the class and store them here.
self.x = x
self.y = y

Prevents the ExternalConstraint class from solving in a GP, thus forcing
iteration
def as_posyslt1(self):

raise TypeError("ExternalConstraint Model cannot solve as a GP.")

Returns the ExternalConstraint class as a GP compatible constraint when
requested by the GPkit solver
def as_gpconstr(self, x0):

Unpacking the GPkit variables
x = self.x
y = self.y

Creating a default constraint for the first solve
if not x0:

return (y >= x)

Returns constraint updated with new call to the external code
else:

Unpack Design Variables at the current point
x_star = x0["x"]

Call external code
res = external_code(x_star)

Return linearized constraint
return (y >= res*x/x_star)

6.2. Calling to External Codes 25

gpkit Documentation, Release 0.4.0

and replace the incompatible constraint in our GP:

"Can be found in gpkit/docs/source/examples/external_sp.py"

import numpy as np
from gpkit import Variable, Model
from external_constraint import ExternalConstraint

x = Variable("x")
y = Variable("y")

objective = y

constraints = [ExternalConstraint(x, y),
x <= np.pi/2.,
x >= np.pi/4.,

]

m = Model(objective, constraints)
sol = m.localsolve(verbosity=1)

Cost

0.7071

Free Variables

x : 0.7854
y : 0.7071

which is the expected result. This method has been generalized to larger problems, such as calling XFOIL
and AVL.

If you wish to start the local optimization at a particular point 𝑥0, however, you may do so by putting that
position (a dictionary formatted as you would a substitution) as the x0 argument

26 Chapter 6. Signomial Programming

CHAPTER 7

Examples

7.1 iPython Notebook Examples

More examples, including some with in-depth explanations and interactive visualizations, can be seen on
nbviewer.

7.2 A Trivial GP

The most trivial GP we can think of: minimize 𝑥 subject to the constraint 𝑥 ≥ 1.

"Very simple problem: minimize x while keeping x greater than 1."
from gpkit import Variable, Model

Decision variable
x = Variable('x')

Constraint
constraints = [x >= 1]

Objective (to minimize)
objective = x

Formulate the Model
m = Model(objective, constraints)

Solve the Model
sol = m.solve(verbosity=0)

print selected results
print("Optimal cost: %s" % sol['cost'])
print("Optimal x val: %s" % sol(x))

Of course, the optimal value is 1. Output:

Optimal cost: 1.0
Optimal x val: 1.0

27

http://nbviewer.ipython.org/github/hoburg/gpkit/tree/master/docs/source/ipynb/
http://nbviewer.ipython.org/github/hoburg/gpkit/tree/master/docs/source/ipynb/

gpkit Documentation, Release 0.4.0

7.3 Maximizing the Volume of a Box

This example comes from Section 2.4 of the GP tutorial, by S. Boyd et. al.

"Maximizes box volume given area and aspect ratio constraints."
from gpkit import Variable, Model

Parameters
alpha = Variable("alpha", 2, "-", "lower limit, wall aspect ratio")
beta = Variable("beta", 10, "-", "upper limit, wall aspect ratio")
gamma = Variable("gamma", 2, "-", "lower limit, floor aspect ratio")
delta = Variable("delta", 10, "-", "upper limit, floor aspect ratio")
A_wall = Variable("A_{wall}", 200, "m^2", "upper limit, wall area")
A_floor = Variable("A_{floor}", 50, "m^2", "upper limit, floor area")

Decision variables
h = Variable("h", "m", "height")
w = Variable("w", "m", "width")
d = Variable("d", "m", "depth")

#Constraints
constraints = [A_wall >= 2*h*w + 2*h*d,

A_floor >= w*d,
h/w >= alpha,
h/w <= beta,
d/w >= gamma,
d/w <= delta]

#Objective function
V = h*w*d
objective = 1/V # To maximize V, we minimize its reciprocal

Formulate the Model
m = Model(objective, constraints)

Solve the Model and print the results table
sol = m.solve(verbosity=1)

The output is

Cost

0.003674 [1/m**3]

Free Variables

d : 8.17 [m] depth
h : 8.163 [m] height
w : 4.081 [m] width

Constants

A_{floor} : 50 [m**2] upper limit, floor area
A_{wall} : 200 [m**2] upper limit, wall area

alpha : 2 lower limit, wall aspect ratio
beta : 10 upper limit, wall aspect ratio

delta : 10 upper limit, floor aspect ratio
gamma : 2 lower limit, floor aspect ratio

28 Chapter 7. Examples

http://stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf

gpkit Documentation, Release 0.4.0

Sensitivities

alpha : 0.5 lower limit, wall aspect ratio
A_{wall} : -1.5 upper limit, wall area

7.4 Water Tank

Say we had a fixed mass of water we wanted to contain within a tank, but also wanted to minimize the
cost of the material we had to purchase (i.e. the surface area of the tank):

"Minimizes cylindrical tank surface area for a particular volume."
from gpkit import Variable, VectorVariable, Model

M = Variable("M", 100, "kg", "Mass of Water in the Tank")
rho = Variable("\\rho", 1000, "kg/m^3", "Density of Water in the Tank")
A = Variable("A", "m^2", "Surface Area of the Tank")
V = Variable("V", "m^3", "Volume of the Tank")
d = VectorVariable(3, "d", "m", "Dimension Vector")

constraints = (A >= 2*(d[0]*d[1] + d[0]*d[2] + d[1]*d[2]),
V == d[0]*d[1]*d[2],
M == V*rho)

m = Model(A, constraints)
sol = m.solve(verbosity=1)

The output is

Cost

1.293 [m**2]

Free Variables

A : 1.293 [m**2] Surface Area of the Tank
V : 0.1 [m**3] Volume of the Tank

\vec{d} : [0.464 0.464 0.464] [m] Dimension Vector

Constants

M : 100 [kg] Mass of Water in the Tank
\rho : 1000 [kg/m**3] Density of Water in the Tank

Sensitivities

M : 0.6667 Mass of Water in the Tank
\rho : -0.6667 Density of Water in the Tank

7.4. Water Tank 29

gpkit Documentation, Release 0.4.0

7.5 Simple Wing

This example comes from Section 3 of Geometric Programming for Aircraft Design Optimization, by W.
Hoburg and P. Abbeel.

"Minimizes airplane drag for a simple drag and structure model."
import numpy as np
from gpkit import Variable, Model

Constants
k = Variable("k", 1.2, "-", "form factor")
e = Variable("e", 0.95, "-", "Oswald efficiency factor")
mu = Variable("\\mu", 1.78e-5, "kg/m/s", "viscosity of air")
pi = Variable("\\pi", np.pi, "-", "half of the circle constant")
rho = Variable("\\rho", 1.23, "kg/m^3", "density of air")
tau = Variable("\\tau", 0.12, "-", "airfoil thickness to chord ratio")
N_ult = Variable("N_{ult}", 3.8, "-", "ultimate load factor")
V_min = Variable("V_{min}", 22, "m/s", "takeoff speed")
C_Lmax = Variable("C_{L,max}", 1.5, "-", "max CL with flaps down")
S_wetratio = Variable("(\\frac{S}{S_{wet}})", 2.05, "-", "wetted area ratio")
W_W_coeff1 = Variable("W_{W_{coeff1}}", 8.71e-5, "1/m",

"Wing Weight Coefficent 1")
W_W_coeff2 = Variable("W_{W_{coeff2}}", 45.24, "Pa",

"Wing Weight Coefficent 2")
CDA0 = Variable("(CDA0)", 0.031, "m^2", "fuselage drag area")
W_0 = Variable("W_0", 4940.0, "N", "aircraft weight excluding wing")

Free Variables
D = Variable("D", "N", "total drag force")
A = Variable("A", "-", "aspect ratio")
S = Variable("S", "m^2", "total wing area")
V = Variable("V", "m/s", "cruising speed")
W = Variable("W", "N", "total aircraft weight")
Re = Variable("Re", "-", "Reynold's number")
C_D = Variable("C_D", "-", "Drag coefficient of wing")
C_L = Variable("C_L", "-", "Lift coefficent of wing")
C_f = Variable("C_f", "-", "skin friction coefficient")
W_w = Variable("W_w", "N", "wing weight")

constraints = []

Drag model
C_D_fuse = CDA0/S
C_D_wpar = k*C_f*S_wetratio
C_D_ind = C_L**2/(pi*A*e)
constraints += [C_D >= C_D_fuse + C_D_wpar + C_D_ind]

Wing weight model
W_w_strc = W_W_coeff1*(N_ult*A**1.5*(W_0*W*S)**0.5)/tau
W_w_surf = W_W_coeff2 * S
constraints += [W_w >= W_w_surf + W_w_strc]

and the rest of the models
constraints += [D >= 0.5*rho*S*C_D*V**2,

Re <= (rho/mu)*V*(S/A)**0.5,
C_f >= 0.074/Re**0.2,
W <= 0.5*rho*S*C_L*V**2,

30 Chapter 7. Examples

http://web.mit.edu/~whoburg/www/papers/hoburgabbeel2014.pdf

gpkit Documentation, Release 0.4.0

W <= 0.5*rho*S*C_Lmax*V_min**2,
W >= W_0 + W_w]

print("SINGLE\n======")
m = Model(D, constraints)
sol = m.solve(verbosity=1)

print("SWEEP\n=====")
N = 2
sweeps = {V_min: ("sweep", np.linspace(20, 25, N)),

V: ("sweep", np.linspace(45, 55, N)), }
m.substitutions.update(sweeps)
m.solve(verbosity=1)

The output is

SINGLE
======

Cost

303.1 [N]

Free Variables

A : 8.46 aspect ratio

C_D : 0.02059 Drag coefficient of wing
C_L : 0.4988 Lift coefficent of wing
C_f : 0.003599 skin friction coefficient
D : 303.1 [N] total drag force

Re : 3.675e+06 Reynold's number
S : 16.44 [m**2] total wing area
V : 38.15 [m/s] cruising speed
W : 7341 [N] total aircraft weight

W_w : 2401 [N] wing weight

Constants

(CDA0) : 0.031 [m**2] fuselage drag area
(\frac{S}{S_{wet}}) : 2.05 wetted area ratio

C_{L,max} : 1.5 max CL with flaps down
N_{ult} : 3.8 ultimate load factor
V_{min} : 22 [m/s] takeoff speed

W_0 : 4940 [N] aircraft weight excluding wing
W_{W_{coeff1}} : 8.71e-05 [1/m] Wing Weight Coefficent 1
W_{W_{coeff2}} : 45.24 [Pa] Wing Weight Coefficent 2

\mu : 1.78e-05 [kg/m/s] viscosity of air
\pi : 3.142 half of the circle constant

\rho : 1.23 [kg/m**3] density of air
\tau : 0.12 airfoil thickness to chord ratio

e : 0.95 Oswald efficiency factor
k : 1.2 form factor

Sensitivities

W_0 : 1.011 aircraft weight excluding wing
k : 0.4299 form factor

(\frac{S}{S_{wet}}) : 0.4299 wetted area ratio
W_{W_{coeff1}} : 0.2903 Wing Weight Coefficent 1

7.5. Simple Wing 31

gpkit Documentation, Release 0.4.0

N_{ult} : 0.2903 ultimate load factor
W_{W_{coeff2}} : 0.1303 Wing Weight Coefficent 2

(CDA0) : 0.09156 fuselage drag area
\mu : 0.08599 viscosity of air

C_{L,max} : -0.1839 max CL with flaps down
\rho : -0.2269 density of air
\tau : -0.2903 airfoil thickness to chord ratio

V_{min} : -0.3678 takeoff speed
e : -0.4785 Oswald efficiency factor

\pi : -0.4785 half of the circle constant

SWEEP
=====

Cost

[338 294 396 326] [N]

Sweep Variables

V : [45 45 55 55] [m/s] cruising speed
V_{min} : [20 25 20 25] [m/s] takeoff speed

Free Variables

A : [6.2 8.84 4.77 7.16] aspect ratio

C_D : [0.0146 0.0196 0.0123 0.0157] Drag coefficient of wing
C_L : [0.296 0.463 0.198 0.31] Lift coefficent of wing
C_f : [0.00333 0.00361 0.00314 0.00342] skin friction coefficient
D : [338 294 396 326] [N] total drag force

Re : [5.38e+06 3.63e+06 7.24e+06 4.75e+06] Reynold's number
S : [18.6 12.1 17.3 11.2] [m**2] total wing area
W : [6.85e+03 6.97e+03 6.4e+03 6.44e+03] [N] total aircraft weight

W_w : [1.91e+03 2.03e+03 1.46e+03 1.5e+03] [N] wing weight

Constants

(CDA0) : 0.031 [m**2] fuselage drag area
(\frac{S}{S_{wet}}) : 2.05 wetted area ratio

C_{L,max} : 1.5 max CL with flaps down
N_{ult} : 3.8 ultimate load factor

W_0 : 4940 [N] aircraft weight excluding wing
W_{W_{coeff1}} : 8.71e-05 [1/m] Wing Weight Coefficent 1
W_{W_{coeff2}} : 45.24 [Pa] Wing Weight Coefficent 2

\mu : 1.78e-05 [kg/m/s] viscosity of air
\pi : 3.142 half of the circle constant

\rho : 1.23 [kg/m**3] density of air
\tau : 0.12 airfoil thickness to chord ratio

e : 0.95 Oswald efficiency factor
k : 1.2 form factor

Sensitivities

W_0 : [0.919 0.947 0.845 0.847] aircraft weight excluding wing
V : [0.589 0.249 0.975 0.746] cruising speed
k : [0.561 0.454 0.63 0.536] form factor

(\frac{S}{S_{wet}}) : [0.561 0.454 0.63 0.536] wetted area ratio
W_{W_{coeff1}} : [0.179 0.247 0.108 0.155] Wing Weight Coefficent 1

32 Chapter 7. Examples

gpkit Documentation, Release 0.4.0

N_{ult} : [0.179 0.247 0.108 0.155] ultimate load factor
(CDA0) : [0.114 0.131 0.146 0.177] fuselage drag area

W_{W_{coeff2}} : [0.141 0.0911 0.126 0.0787] Wing Weight Coefficent 2
\mu : [0.112 0.0907 0.126 0.107] viscosity of air

\rho : [-0.172 -0.129 -0.097 -0.0331] density of air
\tau : [-0.179 -0.247 -0.108 -0.155] airfoil thickness to chord ratio

e : [-0.325 -0.415 -0.225 -0.287] Oswald efficiency factor
\pi : [-0.325 -0.415 -0.225 -0.287] half of the circle constant

C_{L,max} : [-0.411 -0.207 -0.521 -0.353] max CL with flaps down
V_{min} : [-0.822 -0.415 -1.04 -0.705] takeoff speed

7.6 Simple Beam

In this example we consider a beam subjected to a uniformly distributed transverse force along its length.
The beam has fixed geometry so we are not optimizing its shape, rather we are simply solving a discretiza-
tion of the Euler-Bernoulli beam bending equations using GP.

"""
A simple beam example with fixed geometry. Solves the discretized
Euler-Bernoulli beam equations for a constant distributed load
"""
import numpy as np
from gpkit import Variable, VectorVariable, Model, units
from gpkit.small_scripts import mag

class Beam(Model):
"""Discretization of the Euler beam equations for a distributed load.

Arguments

N : int

Number of finite elements that compose the beam.
L : float

[m] Length of beam.
EI : float

[N m^2] Elastic modulus times cross-section's area moment of inertia.
q : float or N-vector of floats

[N/m] Loading density: can be specified as constants or as an array.
"""
def __init__(self, N=4, **kwargs):

EI = Variable("EI", 1e4, "N*m^2")
dx = Variable("dx", "m", "Length of an element")
L = Variable("L", 5, "m", "Overall beam length")
q = VectorVariable(N, "q", 100*np.ones(N), "N/m",

"Distributed load at each point")
V = VectorVariable(N, "V", "N", "Internal shear")
V_tip = Variable("V_{tip}", 0, "N", "Tip loading")
M = VectorVariable(N, "M", "N*m", "Internal moment")
M_tip = Variable("M_{tip}", 0, "N*m", "Tip moment")
th = VectorVariable(N, "\\theta", "-", "Slope")
th_base = Variable("\\theta_{base}", 0, "-", "Base angle")
w = VectorVariable(N, "w", "m", "Displacement")
w_base = Variable("w_{base}", 0, "m", "Base deflection")
below: trapezoidal integration to form a piecewise-linear

7.6. Simple Beam 33

gpkit Documentation, Release 0.4.0

approximation of loading, shear, and so on
shear and moment increase from tip to base (left > right)
shear_eq = (V >= V.right + 0.5*dx*(q + q.right))
shear_eq[-1] = (V[-1] >= V_tip) # tip boundary condition
moment_eq = (M >= M.right + 0.5*dx*(V + V.right))
moment_eq[-1] = (M[-1] >= M_tip)
slope and displacement increase from base to tip (right > left)
theta_eq = (th >= th.left + 0.5*dx*(M + M.left)/EI)
theta_eq[0] = (th[0] >= th_base) # base boundary condition
displ_eq = (w >= w.left + 0.5*dx*(th + th.left))
displ_eq[0] = (w[0] >= w_base)
minimize tip displacement (the last w)
Model.__init__(self, w[-1],

[shear_eq, moment_eq, theta_eq, displ_eq,
L == (N-1)*dx], **kwargs)

b = Beam(N=6, substitutions={"L": 6, "EI": 1.1e4, "q": 110*np.ones(10)})
b.zero_lower_unbounded_variables()
sol = b.solve(verbosity=1)
w_gp = sol("w") # deflection along beam

L, EI, q = sol("L"), sol("EI"), sol("q")
x = np.linspace(0, mag(L), len(q))*units.m # position along beam
q = q[0] # assume uniform loading for the check below
w_exact = q/(24.*EI) * x**2 * (x**2 - 4*L*x + 6*L**2) # analytic soln

assert max(abs(w_gp - w_exact)) <= 1e-2*units.m

PLOT = False
if PLOT:

import matplotlib.pyplot as plt
x_exact = np.linspace(0, L, 1000)
w_exact = q/(24.*EI) * x_exact**2 * (x_exact**2 - 4*L*x_exact + 6*L**2)
plt.plot(x, w_gp, color='red', linestyle='solid', marker='^',

markersize=8)
plt.plot(x_exact, w_exact, color='blue', linestyle='dashed')
plt.xlabel('x [m]')
plt.ylabel('Deflection [m]')
plt.axis('equal')
plt.legend(['GP solution', 'Analytical solution'])
plt.show()

The output is

Cost

1.62 [m]

Free Variables

dx : 1.2 [m] Length of an element
\vec{M} : [1.98e+03 1.27e+03 713 317 ...] [N*m] Internal moment
\vec{V} : [660 528 396 264 ...] [N] Internal shear

\vec{\theta} : [- 0.177 0.285 0.341 ...] Slope
\vec{w} : [- 0.106 0.384 0.759 ...] [m] Displacement

Constants

34 Chapter 7. Examples

gpkit Documentation, Release 0.4.0

EI : 1.1e+04 [N*m**2]
L : 6 [m] Overall beam length

M_{tip} : 0 [N*m] Tip moment
V_{tip} : 0 [N] Tip loading

\theta_{base} : 0 Base angle
w_{base} : 0 [m] Base deflection
\vec{M} : [- - - - ...] [N*m] Internal moment
\vec{V} : [- - - - ...] [N] Internal shear

\vec{\theta} : [0 - - - ...] Slope
\vec{q} : [110 110 110 110 ...] [N/m] Distributed load at each point
\vec{w} : [0 - - - ...] [m] Displacement

Sensitivities

L : 4 Overall beam length
\vec{q} : [0.0072 0.0416 0.118 0.234 ...] Distributed load at each point

EI : -1

By plotting the deflection, we can see that the agreement between the analytical solution and the GP
solution is good.

7.6. Simple Beam 35

gpkit Documentation, Release 0.4.0

36 Chapter 7. Examples

CHAPTER 8

Glossary

For an alphabetical listing of all commands, check out the genindex

37

gpkit Documentation, Release 0.4.0

38 Chapter 8. Glossary

gpkit Documentation, Release 0.4.0

8.1 gpkit package

8.1.1 Subpackages

gpkit.constraints package

Submodules

gpkit.constraints.array module

gpkit.constraints.costed module

gpkit.constraints.linked module

gpkit.constraints.model module

gpkit.constraints.prog_factories module

gpkit.constraints.set module

gpkit.constraints.signomial_program module

gpkit.constraints.single_equation module

gpkit.constraints.tight module

Module contents

gpkit.interactive package

Submodules

gpkit.interactive.chartjs module

gpkit.interactive.plotting module

gpkit.interactive.ractor module

gpkit.interactive.sensitivity_map module

gpkit.interactive.widgets module

Module contents

gpkit.nomials package

Submodules

gpkit.nomials.array module

gpkit.nomials.data module

gpkit.nomials.nomial_core module

gpkit.nomials.nomial_math module

gpkit.nomials.substitution module

gpkit.nomials.variables module

Module contents

gpkit.tests package

Submodules

gpkit.tests.helpers module

gpkit.tests.run_tests module

gpkit.tests.t_constraints module

gpkit.tests.t_examples module

gpkit.tests.t_keydict module

gpkit.tests.t_model module

gpkit.tests.t_nomial_array module

gpkit.tests.t_nomials module

gpkit.tests.t_small module

gpkit.tests.t_solution_array module

gpkit.tests.t_sub module

gpkit.tests.t_tools module

gpkit.tests.t_vars module

Module contents

gpkit.tools package

Submodules

gpkit.tools.fmincon module

gpkit.tools.simpleflight module

gpkit.tools.tools module

Module contents

8.1.2 Submodules

8.1.3 gpkit.build module

8.1.4 gpkit.feasibility module

8.1.5 gpkit.geometric_program module

8.1.6 gpkit.keydict module

8.1.7 gpkit.modified_ctypesgen module

8.1.8 gpkit.repr_conventions module

8.1.9 gpkit.small_classes module

8.1.10 gpkit.small_scripts module

8.1.11 gpkit.solution_array module

8.1.12 gpkit.varkey module

8.1.13 Module contents

8.1. gpkit package 39

gpkit Documentation, Release 0.4.0

40 Chapter 8. Glossary

CHAPTER 9

Citing GPkit

If you use GPkit, please cite it with the following bibtex:

@Misc{gpkit,
author={Edward Burnell and Warren Hoburg},
title={GPkit software for geometric programming},
howpublished={\url{https://github.com/hoburg/gpkit}},
year={2015},
note={Version 0.4.0}

}

41

gpkit Documentation, Release 0.4.0

42 Chapter 9. Citing GPkit

CHAPTER 10

Acknowledgements

We thank the following contributors for helping to improve GPkit:

• Marshall Galbraith for setting up continuous integration.

• Stephen Boyd for inspiration and suggestions.

43

http://stanford.edu/~boyd/

gpkit Documentation, Release 0.4.0

44 Chapter 10. Acknowledgements

CHAPTER 11

Release Notes

This page lists the changes made in each point version of gpkit.

11.1 Version 0.4

• New model for considering constraints: all constraints are considered as sets of constraints which
may contain other constraints, and are asked for their substitutions / posynomial less than 1 repre-
sentation as late as possible.

• Support for calling external code during an SP solve.

• New class KeyDict to allow referring to variables by name or with objects.

• Many many other bug fixes, speed ups, and refactors under the hood.

11.2 Version 0.3

• Integrated GP and SP creation under the Model class

• Improved and simplified under-the-hood internals of GPs and SPs

• New experimental SP heuristic

• Improved test coverage

• Handles vectors which are partially constants, partially free

• Simplified interaction with Model objects and made it more pythonic

• Added SP “step” method to allow single-stepping through an SP

• Isolated and corrected some solver-specific behavior

• Fully allowed substitutions of variables for 0 (commit 4631255)

• Use “with” to create a signomials environment (commit cd8d581)

• Continuous integration improvements, thanks @galbramc !

• Not counting subpackages, went from 2200 to 2400 lines of code (additions were mostly longer
error messages) and from 650 to 1050 lines of docstrings and comments.

• Add automatic feasibility-analysis methods to Model and GP

• Simplified solver logging and printing, making it easier to access solver output.

45

gpkit Documentation, Release 0.4.0

11.3 Version 0.2

• Various bug fixes

• Python 3 compatibility

• Added signomial programming support (alpha quality, may be wrong)

• Added composite objectives

• Parallelized sweeping

• Better table printing

• Linked sweep variables

• Better error messages

• Closest feasible point capability

• Improved install process (no longer requires ctypesgen; auto-detects MOSEK version)

• Added examples: wind turbine, modular GP, examples from 1967 book, maintenance (part replace-
ment)

• Documentation grew by ~70%

• Added Advanced Commands section to documentation

• Many additional unit tests (more than doubled testing lines of code)

46 Chapter 11. Release Notes

	Geometric Programming 101
	What is a GP?
	Why are GPs special?
	What are Signomials / Signomial Programs?
	Where can I learn more?

	GPkit Overview
	Symbolic expressions
	Substitution
	Model objects

	Installation Instructions
	Install dependencies
	Install a GP solver
	Install GPkit
	Debugging installation
	Updating GPkit between releases

	Getting Started
	Declaring Variables
	Creating Monomials and Posynomials
	Declaring Constraints
	Formulating a Model
	Solving the Model
	Printing Results
	Sensitivities and dual variables

	Advanced Commands
	Feasibility Analysis
	Plotting variable sensitivities
	Substitutions
	Sweeps
	Composite Objectives

	Signomial Programming
	Example Usage
	Calling to External Codes

	Examples
	iPython Notebook Examples
	A Trivial GP
	Maximizing the Volume of a Box
	Water Tank
	Simple Wing
	Simple Beam

	Glossary
	gpkit package

	Citing GPkit
	Acknowledgements
	Release Notes
	Version 0.4
	Version 0.3
	Version 0.2

