

[image: _images/gplogo.png]

GPkit is a Python package for defining and manipulating
geometric programming (GP) models.

Our hopes are to bring the mathematics of Geometric Programming
into the engineering design process
in a disciplined and collaborative way, and to
encourage research with and on GPs by providing an
easily extensible object-oriented framework.

GPkit abstracts away the backend solver so that users
can work directly with engineering equations and optimization concepts.
Supported solvers are
MOSEK [http://mosek.com]
and CVXOPT [http://cvxopt.org].

Join our mailing list [https://mailman.mit.edu/mailman/listinfo/gpkit-users/] and/or chatroom [https://gitter.im/gpkit-users/Lobby] for support and examples.

Table of contents

	Geometric Programming 101
	What is a GP?

	Why are GPs special?

	What are Signomials / Signomial Programs?

	Where can I learn more?

	GPkit Overview
	Symbolic expressions

	Substitution

	Model objects

	Installation Instructions
	Installation dependencies

	Install a GP solver

	Install GPkit

	Debugging installation

	Bleeding-edge / developer installations

	Getting Started
	Declaring Variables

	Creating Monomials and Posynomials

	Declaring Constraints

	Formulating a Model

	Solving the Model

	Printing Results

	Sensitivities and dual variables

	Debugging Models
	Potential errors and warnings

	Dual Infeasibility

	Primal Infeasibility

	Visualization and Interaction
	Sankey Diagrams

	Plotting a 1D Sweep

	Building Complex Models
	Inheriting from Model

	Accessing Variables in Models

	Vectorization

	Multipoint analysis modeling

	Advanced Commands
	Derived Variables

	Sweeps

	Tight ConstraintSets

	Substitutions

	Composite Objectives

	Signomial Programming
	Example Usage

	Sequential Geometric Programs

	Examples
	iPython Notebook Examples

	A Trivial GP

	Maximizing the Volume of a Box

	Water Tank

	Simple Wing

	Simple Beam

	Glossary
	gpkit package

	Citing GPkit

	Acknowledgements

	Release Notes
	Version 0.7.0

	Version 0.6.0

	Version 0.5.3

	Version 0.5.2

	Version 0.5.1

	Version 0.5.0

	Version 0.4.2

	Version 0.4.0

	Version 0.3.4

	Version 0.3.2

	Version 0.3

	Version 0.2

Geometric Programming 101

What is a GP?

A Geometric Program (GP) is a type of non-linear optimization problem whose objective and constraints have a particular form.

The decision variables must be strictly positive (non-zero, non-negative) quantities. This is a good fit for engineering design equations (which are often constructed to have only positive quantities), but any model with variables of unknown sign (such as forces and velocities without a predefined direction) may be difficult to express in a GP. Such models might be better expressed as Signomials.

More precisely, GP objectives and inequalities are formed out of monomials and posynomials. In the context of GP, a monomial is defined as:

\[f(x) = c x_1^{a_1} x_2^{a_2} ... x_n^{a_n}\]

where \(c\) is a positive constant, \(x_{1..n}\) are decision variables, and \(a_{1..n}\) are real exponents. For example, taking \(x\), \(y\) and \(z\) to be positive variables, the expressions

\[7x \qquad 4xy^2z \qquad \frac{2x}{y^2z^{0.3}} \qquad \sqrt{2xy}\]

are all monomials. Building on this, a posynomial is defined as a sum of monomials:

\[g(x) = \sum_{k=1}^K c_k x_1^{a_1k} x_2^{a_2k} ... x_n^{a_nk}\]

For example, the expressions

\[x^2 + 2xy + 1 \qquad 7xy + 0.4(yz)^{-1/3} \qquad 0.56 + \frac{x^{0.7}}{yz}\]

are all posynomials.
Alternatively, monomials can be defined as the subset of posynomials having only one term.
Using \(f_i\) to represent a monomial and \(g_i\) to represent a posynomial,
a GP in standard form is written as:

\[\begin{split}\begin{array}{lll}\text{}
\text{minimize} & g_0(x) & \\
\text{subject to} & f_i(x) = 1, & i = 1,....,m \\
 & g_i(x) \leq 1, & i = 1,....,n
 \end{array}\end{split}\]

Boyd et. al. give the following example of a GP in standard form:

\[\begin{split}\begin{array}{llll}\text{}
\text{minimize} & x^{-1}y^{-1/2}z^{-1} + 2.3xz + 4xyz \\
\text{subject to} & (1/3)x^{-2}y^{-2} + (4/3)y^{1/2}z^{-1} \leq 1 \\
 & x + 2y + 3z \leq 1 \\
 & (1/2)xy = 1
 \end{array}\end{split}\]

Why are GPs special?

Geometric programs have several powerful properties:

	Unlike most non-linear optimization problems, large GPs can be solved extremely quickly.

	If there exists an optimal solution to a GP, it is guaranteed to be globally optimal.

	Modern GP solvers require no initial guesses or tuning of solver parameters.

These properties arise because GPs become convex optimization problems via a logarithmic transformation. In addition to their mathematical benefits, recent research has shown that many practical problems can be formulated as GPs or closely approximated as GPs.

What are Signomials / Signomial Programs?

When the coefficients in a posynomial are allowed to be negative (but the variables stay strictly positive), that is called a Signomial.

A Signomial Program has signomial constraints. While they cannot be solved as quickly or to global optima, because they build on the structure of a GP they can often be solved more quickly than a generic nonlinear program. More information can be found under Signomial Programming.

Where can I learn more?

To learn more about GPs, refer to the following resources:

	A tutorial on geometric programming [http://stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf], by S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi.

	Convex optimization [http://stanford.edu/~boyd/cvxbook/], by S. Boyd and L. Vandenberghe.

	Geometric Programming for Aircraft Design Optimization [http://web.mit.edu/~whoburg/www/papers/hoburgabbeel2014.pdf], Hoburg, Abbeel 2014

GPkit Overview

GPkit is a Python package for defining and manipulating
geometric programming (GP) models,
abstracting away the backend solver.

Our hopes are to bring the mathematics of Geometric Programming
into the engineering design process
in a disciplined and collaborative way, and to
encourage research with and on GPs by providing an
easily extensible object-oriented framework.

Symbolic expressions

GPkit is a limited symbolic algebra language, allowing only for the creation of geometric program compatible equations (or signomial program compatible ones, if signomial programming is enabled). As mentioned in Geometric Programming 101, one can view monomials as posynomials with a single term, and posynomials as signomials that have only positive coefficients. The inheritance structure of these objects in GPkit follows this mathematical basis.

[image: _images/inheritance.png]

Substitution

The Varkey object in the graph above is not a algebraic expression, but what GPkit uses as a variable’s “name”. It carries the LaTeX representation of a variable and its units, as well as any other information the user wishes to associate with a variable. The use of VarKeys as opposed to numeric indexing is an important part of the GPkit framework, because it allows a user to keep variable information local and modular.

GPkit keeps its internal representation of objects entirely symbolic until it solves. This means that any expression or Model object can replace any instance of a variable (as represented by a VarKey) with a number, new VarKey, or even an entire Monomial at any time with the .sub() method.

Model objects

In GPkit, a Model object represents a symbolic problem declaration.
That problem may be either GP-compatible or SP-compatible.
To avoid confusion, calling the solve() method on a model will either attempt to solve it for a global optimum (if it’s a GP) or return an error immediately (if it’s an SP). Similarly, calling localsolve() will either start the process of SP-solving (stepping through a sequence of GP-approximations) or return an error for GP-compatible Models. This framework is illustrated below.

[image: _images/solvemethods.png]

Installation Instructions

If you encounter bugs during installation, please email gpkit@mit.edu
or raise a GitHub issue [http://github.com/convexengineering/gpkit/issues/new].

Installation dependencies

To install GPkit, you’ll need to have the following python packages already installed on your system:

	pip

	numpy version 1.8.1 or newer

	scipy

	pint

and at least one solver, which we’ll choose and install in a later step.

There are many ways to install these dependencies, but here’s our suggestion:

Get pip

	Mac OS X

	Run easy_install pip at a terminal window.

	Linux

	
	Use your package manager to install pip

	Ubuntu: sudo apt-get install python-pip

	Windows

	Install the Python 2.7 64-bit version of Anaconda [http://www.continuum.io/downloads#_windows].

Get python packages

	Mac OS X

	
	Run the following commands:

	
	pip install pip --upgrade

	pip install numpy

	pip install scipy

	pip install pint

	Linux

	
	Use your package manager to install numpy and scipy

	Ubuntu: sudo apt-get install python-numpy python-scipy

Run pip install pint (for system python installs, use sudo pip)

	Windows

	Do nothing at this step; Anaconda already has the needed packages.

Install a GP solver

GPkit interfaces with two off the shelf solvers: cvxopt, and mosek.
Cvxopt is open source; mosek requires a commercial licence or (free)
academic license.

At least one solver is required.

Installing cvxopt

	Mac OSX

	Run pip install cvxopt

	Linux

	Run sudo apt-get install libblas-dev liblapack-dev libsuitesparse-dev or otherwise install those libraries

Run pip install cvxopt (for system python installs, use sudo pip)

If experiencing issues with wheel in Ubuntu 16.04, try the official installer. [http://cvxopt.org/install/index.html]

	Windows

	Run conda install -c omnia cvxopt in an Anaconda Command Prompt.

Installing mosek

Dependency note: GPkit uses the python package ctypesgen to interface with the MOSEK C bindings.

Licensing note: if you do not have a paid license,
you will need an academic or trial license to proceed.

	Mac OS X

	
	If which gcc does not return anything, install XCode and the Apple Command Line Tools [https://developer.apple.com/downloads/index.action?=command%20line%20tools].

	Install ctypesgen with pip install ctypesgen --pre.

	
	Download MOSEK [https://www.mosek.com/downloads/], then:

	
	Move the mosek folder to your home directory

	Follow these steps for Mac [http://docs.mosek.com/7.0/toolsinstall/Mac_OS_X_installation.html].

	Request an academic license file [http://license.mosek.com/academic] and put it in ~/mosek/

	Linux

	
	Install ctypesgen with pip install ctypesgen --pre (for system python installs, use sudo pip)

	
	Download MOSEK [https://www.mosek.com/downloads/], then:

	
	Move the mosek folder to your home directory

	Follow these steps for Linux [http://docs.mosek.com/7.0/toolsinstall/Linux_UNIX_installation_instructions.html].

	Request an academic license file [http://license.mosek.com/academic] and put it in ~/mosek/

	Windows

	
	Install ctypesgen by running pip install ctypesgen --pre in an Anaconda Command Prompt .

	
	Download MOSEK [https://www.mosek.com/downloads/], then:

	
	Follow these steps for Windows [http://docs.mosek.com/7.0/toolsinstall/Windows_installation.html].

	Request an academic license file [http://license.mosek.com/academic] and put it in C:\Users\(your_username)\mosek\

	
	Make sure gcc is on your system path.

	
	To do this, type gcc into a command prompt.

	If you get executable not found, then install the 64-bit version (x86_64 installer architecture dropdown option) of mingw [http://sourceforge.net/projects/mingw-w64/].

	Make sure the mingw bin directory is on your system path (you may have to add it manually).

Install GPkit

	Run pip install gpkit at the command line (for system python installs, use sudo pip)

	Run pip install jupyter to install jupyter notebook (recommended)

	Run jupyter nbextension enable --py widgetsnbextension for interactive control of models in jupyter (recommended)

	Run python -c "import gpkit.tests; gpkit.tests.run()" to run the tests; if any tests do not pass, please email gpkit@mit.edu or raise a GitHub issue [http://github.com/convexengineering/gpkit/issues/new].

	Join our mailing list [https://mailman.mit.edu/mailman/listinfo/gpkit-users/] and/or chatroom [https://gitter.im/gpkit-users/Lobby] for support and examples.

Debugging installation

	You may need to rebuild GPkit if any of the following occur:

	
	You install a new solver (mosek or cvxopt) after installing GPkit

	You delete the .gpkit folder from your home directory

	You see Could not load settings file. when importing GPkit, or

	Could not load MOSEK library: ImportError('$HOME/.gpkit/expopt.so not found.')

	To rebuild GPkit, first try running python -c "from gpkit.build import rebuild; rebuild()". If that doesn’t work then try the following:

	
	Run pip uninstall gpkit

	Run pip install --no-cache-dir --no-deps gpkit

	Run python -c "import gpkit.tests; gpkit.tests.run()"

	If any tests fail, please email gpkit@mit.edu or raise a GitHub issue [http://github.com/convexengineering/gpkit/issues/new].

Bleeding-edge / developer installations

Active developers may wish to install the latest GPkit [http://github.com/convexengineering/gpkit] directly from the source code on Github. To do so,

	Run pip uninstall gpkit to uninstall your existing GPkit.

	Run git clone https://github.com/convexengineering/gpkit.git to clone the GPkit repository.

	Run pip install -e gpkit to install that directory as your environment-wide GPkit.

	Run cd ..; python -c "import gpkit.tests; gpkit.tests.run()" to test your installation from a non-local directory.

Getting Started

GPkit is a Python package, so we assume basic familiarity with Python: if you’re new to Python we recommend you take a look at Learn Python [http://www.learnpython.org].

Otherwise, install GPkit and import away:

from gpkit import Variable, VectorVariable, Model

Declaring Variables

Instances of the Variable class represent scalar variables. They create a VarKey to store the variable’s name, units, a description, and value (if the Variable is to be held constant), as well as other metadata.

Free Variables

Declare a variable, x
x = Variable("x")

Declare a variable, y, with units of meters
y = Variable("y", "m")

Declare a variable, z, with units of meters, and a description
z = Variable("z", "m", "A variable called z with units of meters")

Fixed Variables

To declare a variable with a constant value, use the Variable class, as above, but put a number before the units:

Declare \rho equal to 1.225 kg/m^3.
NOTE: in python string literals, backslashes must be doubled
rho = Variable("\\rho", 1.225, "kg/m^3", "Density of air at sea level")

In the example above, the key name "\rho" is for LaTeX printing (described later). The unit and description arguments are optional.

#Declare pi equal to 3.14
pi = Variable("\\pi", 3.14)

Vector Variables

Vector variables are represented by the VectorVariable class.
The first argument is the length of the vector.
All other inputs follow those of the Variable class.

Declare a 3-element vector variable "x" with units of "m"
x = VectorVariable(3, "x", "m", "Cube corner coordinates")
x_min = VectorVariable(3, "x", [1, 2, 3], "m", "Cube corner minimum")

Creating Monomials and Posynomials

Monomial and posynomial expressions can be created using mathematical operations on variables.

create a Monomial term xy^2/z
x = Variable("x")
y = Variable("y")
z = Variable("z")
m = x * y**2 / z
type(m) # gpkit.nomials.Monomial

create a Posynomial expression x + xy^2
x = Variable("x")
y = Variable("y")
p = x + x * y**2
type(p) # gpkit.nomials.Posynomial

Declaring Constraints

Constraint objects represent constraints of the form Monomial >= Posynomial or Monomial == Monomial (which are the forms required for GP-compatibility).

Note that constraints must be formed using <=, >=, or == operators, not < or >.

consider a block with dimensions x, y, z less than 1
constrain surface area less than 1.0 m^2
x = Variable("x", "m")
y = Variable("y", "m")
z = Variable("z", "m")
S = Variable("S", 1.0, "m^2")
c = (2*x*y + 2*x*z + 2*y*z <= S)
type(c) # gpkit.nomials.PosynomialInequality

Formulating a Model

The Model class represents an optimization problem. To create one, pass an objective and list of Constraints.

By convention, the objective is the function to be minimized. If you wish to maximize a function, take its reciprocal. For example, the code below creates an objective which, when minimized, will maximize x*y*z.

objective = 1/(x*y*z)
constraints = [2*x*y + 2*x*z + 2*y*z <= S,
 x >= 2*y]
m = Model(objective, constraints)

Solving the Model

When solving the model you can change the level of information that gets printed to the screen with the verbosity setting. A verbosity of 1 (the default) prints warnings and timing; a verbosity of 2 prints solver output, and a verbosity of 0 prints nothing.

sol = m.solve(verbosity=0)

Printing Results

The solution object can represent itself as a table:

print sol.table()

Cost

 15.59 [1/m**3]

Free Variables

x : 0.5774 [m]
y : 0.2887 [m]
z : 0.3849 [m]

Constants

S : 1 [m**2]

Sensitivities

S : -1.5

We can also print the optimal value and solved variables individually.

print "The optimal value is %s." % sol["cost"]
print "The x dimension is %s." % sol(x)
print "The y dimension is %s." % sol["variables"]["y"]

The optimal value is 15.5884619886.
The x dimension is 0.5774 meter.
The y dimension is 0.2887 meter.

Sensitivities and dual variables

When a GP is solved, the solver returns not just the optimal value for the problem’s variables (known as the “primal solution”) but also the effect that relaxing each constraint would have on the overall objective (the “dual solution”).

From the dual solution GPkit computes the sensitivities for every fixed variable in the problem. This can be quite useful for seeing which constraints are most crucial, and prioritizing remodeling and assumption-checking.

Using variable sensitivities

Fixed variable sensitivities can be accessed from a SolutionArray’s ["sensitivities"]["constants"] dict, as in this example:

import gpkit
x = gpkit.Variable("x")
x_min = gpkit.Variable("x_{min}", 2)
sol = gpkit.Model(x, [x_min <= x]).solve()
assert sol["sensitivities"]["constants"][x_min] == 1

These sensitivities are actually log derivatives (\(\frac{d \mathrm{log}(y)}{d \mathrm{log}(x)}\)); whereas a regular derivative is a tangent line, these are tangent monomials, so the 1 above indicates that x_min has a linear relation with the objective. This is confirmed by a further example:

import gpkit
x = gpkit.Variable("x")
x_squared_min = gpkit.Variable("x^2_{min}", 2)
sol = gpkit.Model(x, [x_squared_min <= x**2]).solve()
assert sol["sensitivities"]["constants"][x_squared_min] == 2

Debugging Models

A number of errors and warnings may be raised when attempting to solve a model.
A model may be primal infeasible: there is no possible solution that satisfies all constraints. A model may be dual infeasible: the optimal value of one or more variables is 0 or infinity (negative and positive infinity in logspace).

For a GP model that does not solve, solvers may be able to prove its primal or dual infeasibility, or may return an unknown status.

GPkit contains several tools for diagnosing which constraints and variables might be causing infeasibility. The first thing to do with a model m that won’t solve is to run m.debug(), which will search for changes that would make the model feasible:

"Debug examples"

from gpkit import Variable, Model, units

x = Variable("x", "ft")
x_min = Variable("x_min", 2, "ft")
x_max = Variable("x_max", 1, "ft")
y = Variable("y", "volts")

m = Model(x/y, [x <= x_max, x >= x_min])
m.debug()

print "# Now let's try a model unsolvable with relaxed constants\n"

Model(x, [x <= units("inch"), x >= units("yard")]).debug()

print "# And one that's only unbounded\n"

the value of x_min was used up in the previous model!
x_min = Variable("x_min", 2, "ft")
Model(x/y, [x >= x_min]).debug()

< DEBUGGING >
> Trying with bounded variables and relaxed constants:

Solves with these variables bounded:
 value near upper bound: y
 sensitive to upper bound: y

and these constants relaxed:
 x_min [ft]: relaxed from 2 to 1

>> Success!

Now let's try a model unsolvable with relaxed constants

< DEBUGGING >
> Trying with bounded variables and relaxed constants:
>> Failure.
> Trying with relaxed constraints:

Solves with these constraints relaxed:
 1: 3500% relaxed, from 3*x**-1 <= 1
 to 3*x**-1 <= 36

>> Success!

And one that's only unbounded

< DEBUGGING >
> Trying with bounded variables and relaxed constants:

Solves with these variables bounded:
 value near upper bound: y
 sensitive to upper bound: y

>> Success!

Note that certain modeling errors (such as omitting or forgetting a constraint) may be difficult to diagnose from this output.

Potential errors and warnings

	
	RuntimeWarning: final status of solver 'mosek' was 'DUAL_INFEAS_CER', not 'optimal’

	
	The solver found a certificate of dual infeasibility: the optimal value of one or more variables is 0 or infinity. See Dual Infeasibility below for debugging advice.

	
	RuntimeWarning: final status of solver 'mosek' was 'PRIM_INFEAS_CER', not 'optimal’

	
	The solver found a certificate of primal infeasibility: no possible solution satisfies all constraints. See Primal Infeasibility below for debugging advice.

	
	RuntimeWarning: final status of solver 'cvxopt' was 'unknown', not 'optimal’ or RuntimeWarning: final status of solver 'mosek' was ‘UNKNOWN’, not 'optimal’.

	
	The solver could not solve the model or find a certificate of infeasibility. This may indicate a dual infeasible model, a primal infeasible model, or other numerical issues. Try debugging with the techniques in Dual and Primal Infeasibility below.

	
	RuntimeWarning: Primal solution violates constraint: 1.0000149786 is greater than 1

	
	this warning indicates that the solver-returned solution violates a constraint of the model, likely because the solver’s tolerance for a final solution exceeds GPkit’s tolerance during solution checking. This is sometimes seen in dual infeasible models, see Dual Infeasibility below. If you run into this, please note on this GitHub issue [https://github.com/convexengineering/gpkit/issues/753] your solver and operating system.

	
	RuntimeWarning: Dual cost nan does not match primal cost 1.00122315152

	
	Similarly to the above, this warning may be seen in dual infeasible models, see Dual Infeasibility below.

Dual Infeasibility

In some cases a model will not solve because the optimal value of one or more variables is 0 or infinity (negative or positive infinity in logspace). Such a problem is dual infeasible because the GP’s dual problem, which determines the optimal values of the sensitivites, does not have any feasible solution. If the solver can prove that the dual is infeasible, it will return a dual infeasibility certificate. Otherwise, it may finish with a solution status of unknown.

gpkit.constraints.bounded.Bounded is a
simple tool that can be used to detect unbounded variables and get dual infeasible models to solve by adding extremely large upper bounds and extremely small lower bounds to all variables in a ConstraintSet.

When a model with a Bounded ConstraintSet is solved, it checks whether any variables slid off to the bounds, notes this in the solution dictionary and prints a warning (if verbosity is greater than 0).

For example, Mosek returns DUAL_INFEAS_CER when attempting to solve the following model:

"Demonstrate a trivial unbounded variable"
from gpkit import Variable, Model
from gpkit.constraints.bounded import Bounded

x = Variable("x")

constraints = [x >= 1]

m = Model(1/x, constraints) # MOSEK returns DUAL_INFEAS_CER on .solve()
m = Model(1/x, Bounded(constraints))
by default, prints bounds warning during solve
sol = m.solve(verbosity=0)
print sol.summary()
print "sol['boundedness'] is:", sol["boundedness"]

Upon viewing the printed output,

Solves with these variables bounded:
 value near upper bound: x
 sensitive to upper bound: x

Cost

 1e-30

Free Variables

x : 1e+30

sol['boundedness'] is: {'value near upper bound': set([x]), 'sensitive to upper bound': set([x])}

The problem, unsurprisingly, is that the cost 1/x has no lower bound because x has no upper bound.

For details read the Bounded docstring.

Primal Infeasibility

A model is primal infeasible when there is no possible solution that satisfies all constraints. A simple example is presented below.

"A simple primal infeasible example"
from gpkit import Variable, Model

x = Variable("x")
y = Variable("y")

m = Model(x*y, [
 x >= 1,
 y >= 2,
 x*y >= 0.5,
 x*y <= 1.5
])

m.solve() # raises uknown on cvxopt
 # and PRIM_INFEAS_CER on mosek

It is not possible for x*y to be less than 1.5 while x is greater than 1 and y is greater than 2.

A common bug in large models that use substitutions is to substitute overly constraining values in for variables that make the model primal infeasible. An example of this is given below.

"Another simple primal infeasible example"
from gpkit import Variable, Model

#Make the necessary Variables
x = Variable("x")
y = Variable("y", 2)

#make the constraints
constraints = [
 x >= 1,
 0.5 <= x*y,
 x*y <= 1.5
]

#declare the objective
objective = x*y

#construct the model
m = Model(objective, constraints)

#solve the model
#raises RuntimeWarning uknown on cvxopt and RuntimeWarning
#PRIM_INFES_CER with mosek
#m.solve()

Since y is now set to 2 and x can be no less than 1, it is again impossible for x*y to be less than 1.5 and the model is primal infeasible. If y was instead set to 1, the model would be feasible and the cost would be 1.

Relaxation

If you suspect your model is primal infeasible, you can find the nearest primal feasible version of it by relaxing constraints: either relaxing all constraints by the smallest number possible (that is, dividing the less-than side of every constraint by the same number), relaxing each constraint by its own number and minimizing the product of those numbers, or changing each constant by the smallest total percentage possible.

"Relaxation examples"

from gpkit import Variable, Model
x = Variable("x")
x_min = Variable("x_min", 2)
x_max = Variable("x_max", 1)
m = Model(x, [x <= x_max, x >= x_min])
print "Original model"
print "=============="
print m
print
m.solve() # raises a RuntimeWarning!

print "With constraints relaxed equally"
print "================================"
from gpkit.constraints.relax import ConstraintsRelaxedEqually
allrelaxed = ConstraintsRelaxedEqually(m)
mr1 = Model(allrelaxed.relaxvar, allrelaxed)
print mr1
print mr1.solve(verbosity=0).table() # solves with an x of 1.414
print

print "With constraints relaxed individually"
print "====================================="
from gpkit.constraints.relax import ConstraintsRelaxed
constraintsrelaxed = ConstraintsRelaxed(m)
mr2 = Model(constraintsrelaxed.relaxvars.prod() * m.cost**0.01,
 # add a bit of the original cost in
 constraintsrelaxed)
print mr2
print mr2.solve(verbosity=0).table() # solves with an x of 1.0
print

print "With constants relaxed individually"
print "==================================="
from gpkit.constraints.relax import ConstantsRelaxed
constantsrelaxed = ConstantsRelaxed(m)
mr3 = Model(constantsrelaxed.relaxvars.prod() * m.cost**0.01,
 # add a bit of the original cost in
 constantsrelaxed)
print mr3
print mr3.solve(verbosity=0).table() # brings x_min down to 1.0
print

Original model
==============

 # minimize
 x
 # subject to
 x <= x_max
 x >= x_min

With constraints relaxed equally
================================

 # minimize
 C_Relax
 # subject to
 C_Relax >= x*x_max**-1
 C_Relax >= x**-1*x_min
 C_Relax >= 1

Cost

 1.414

Free Variables

x : 1.414

 | Relax
C : 1.414

Constants

x_max : 1
x_min : 2

Sensitivities

x_min : +0.5
x_max : -0.5

With constraints relaxed individually
=====================================

 # minimize
 C_Relax.1_(0,)*C_Relax.1_(1,)*x**0.01
 # subject to
 C_Relax.1 >= [gpkit.Monomial(x*x_max**-1), gpkit.Monomial(x**-1*x_min)]
 C_Relax.1 >= 1

Cost

 2

Free Variables

x : 1

 | Relax.1
C : [1 2]

Constants

x_max : 1
x_min : 2

Sensitivities

x_min : +1
x_max : -0.99

With constants relaxed individually
===================================

 # minimize
 x**0.01*x_max_Relax.2*x_min_Relax.2
 # subject to
 x <= x_max
 x >= x_min
 x_min_Relax.2 >= 1
 x_min >= x_min_Relax.2**-1*x_min_{before}_Relax.2
 x_min <= x_min_Relax.2*x_min_{before}_Relax.2
 x_max_Relax.2 >= 1
 x_max >= x_max_Relax.2**-1*x_max_{before}_Relax.2
 x_max <= x_max_Relax.2*x_max_{before}_Relax.2

Cost

 2

Free Variables

 x : 1
x_max : 1
x_min : 1

 | Relax.2
x_max : 1
x_min : 2

Constants

x_max_{before} : 1
x_min_{before} : 2

Sensitivities

x_min : +1
x_max : -0.99

Visualization and Interaction

Sankey Diagrams

Requirements

	jupyter notebook

	ipysankeywidget [https://github.com/ricklupton/ipysankeywidget]

Example

Code in this section uses the CE solar model [https://github.com/convexengineering/solar]

from solar import Mission
M = Mission(latitude=[20], sp=False)
M.cost = M.solar.Wtotal
del M.substitutions[M.solar.wing.planform.tau]
sol = M.solve("mosek")

from gpkit.interactive.sankey import Sankey
Sankey(M).diagram(M.solar.Wtotal)

[image: _images/solar_wtotal.svg]

(objective) adds +1 to the sensitivity of Wtotal_Mission/Aircraft
(objective) is Wtotal_Mission/Aircraft [lbf]

Ⓐ adds +2.71 to the overall sensitivity of Wtotal_Mission/Aircraft
Ⓐ is Wtotal_Mission/Aircraft <= 0.5*CL_Mission/FlightSegment/AircraftPerf/WingAero*S_Mission/Aircraft/Wing/Planform.2*V_Mission/FlightSegment/FlightState**2*rho_Mission/FlightSegment/FlightState

Ⓑ adds -3.71 to the overall sensitivity of Wtotal_Mission/Aircraft
Ⓑ is Wtotal_Mission/Aircraft >= W_Mission/Aircraft/Battery + W_Mission/Aircraft/Empennage + W_Mission/Aircraft/Motor + W_Mission/Aircraft/SolarCells + W_Mission/Aircraft/Wing + Wavn_Mission/Aircraft + Wpay_Mission/Aircraft

Explanation

Sankey
diagrams [https://en.wikipedia.org/wiki/Sankey_diagram] can be used to
visualize sensitivity structure in a model. A blue flow from a constraint to its parent
indicates that the sensitivity of the chosen variable (or of making the
constraint easier, if no variable is given) is negative; that
is, the objective of the overall model would improve if that variable’s
value were increased in that constraint alone. Red indicates a
positive sensitivity: the objective and the the constraint ‘want’ that
variable’s value decreased. Gray flows indicate a sensitivity whose
absolute value is below 1e-7, i.e. a constraint that is inactive for
that variable. Where equal red and blue flows meet, they cancel each
other out to gray.

Usage

Variables

In a Sankey diagram of a variable, the variable is on the left with its
final sensitivity; to the right of it are all constraints that variable
is in.

Free

Free variables have an overall sensitivity of 0, so this visualization
shows how the various pressures on that variable in all its constraints
cancel each other out; this can get quite complex, as in this diagram of the
pressures on wingspan:

Sankey(M).sorted_by("constraints", 1)

[image: _images/solar_constraints1.svg]

Fixed

Fixed variables can have a nonzero overall sensitivity. Sankey diagrams
can how that sensitivity comes together:

Sankey(M).diagram(M.mission[0].loading[1].vgust)

[image: _images/solar_vgust.svg]

Equivalent Variables

If any variables are equal to the diagram’s variable (modulo some
constant factor; e.g. 2*x == y counts for this, as does 2*x <= y
if the constraint is sensitive), they are found and plotted
at the same time, and all shown on the left. The constraints responsible
for this are shown next to their labels.

Sankey(M).diagram(M["CLstall"])

[image: _images/solar_clstall.svg]

Models

When created without a variable, the diagram shows the sensitivity of
every named model to becoming locally easier. Because derivatives are
additive, these sensitivities are too: a model’s sensitivity is equal to
the sum of its constraints’ sensitivities. Gray lines in this diagram
indicate models without any tight constraints.

Sankey(M).diagram(left=60, right=90, width=1050)

[image: _images/solar.svg]

Syntax

	Code

	Result

	s = Sankey(M)

	Creates Sankey object of a given model

	s.diagram(vars)

	Creates the diagram in a way Jupyter knows how to present

	d = s.diagram()

	Don’t do this! Captures output, preventing Jupyter from seeing it.

	s.diagram(width=...)

	Sets width in pixels. Same for height.

	s.diagram(left=...)

	Sets top margin in pixels. Same for right, top. bottom.
Use if the left-hand text is being cut off.

	s.diagram(flowright=True)

	Shows the variable / top constraint on the right instead of the left.

	s.sorted_by("maxflow", 0)

	Creates diagram of the variable with the largest single constraint
sensitivity. (change the 0 index to go down the list)

	s.sorted_by("constraints",
0)

	Creates diagram of the variable that’s in the most constraints.
(change the 0 index to go down the list)

Plotting a 1D Sweep

Methods exist to facilitate creating, solving, and plotting the results of a single-variable sweep (see Sweeps for details). Example usage is as follows:

"Demonstrates manual and auto sweeping and plotting"
import matplotlib as mpl
mpl.use('Agg')
comment out the lines above to show figures in a window
import numpy as np
from gpkit import Model, Variable, units

x = Variable("x", "m", "Swept Variable")
y = Variable("y", "m^2", "Cost")
m = Model(y, [y >= (x/2)**-0.5 * units.m**2.5 + 1*units.m**2, y >= (x/2)**2])

arguments are: model, swept: values, posnomial for y-axis
sol = m.sweep({x: np.linspace(1, 3, 20)}, verbosity=0)
f, ax = sol.plot(y)
ax.set_title("Manually swept (20 points)")
f.show()
f.savefig("plot_sweep1d.png")

arguments are: model, swept: (min, max, optional logtol), posnomial for y-axis
sol = m.autosweep({x: (1, 3)}, tol=0.001, verbosity=0)
f, ax = sol.plot(y)
ax.set_title("Autoswept (7 points)\nGuaranteed to be in blue region")
f.show()
f.savefig("plot_autosweep1d.png")

Which results in:

[image: _images/plot_sweep1d.png]

[image: _images/plot_autosweep1d.png]

Building Complex Models

Inheriting from Model

GPkit encourages an object-oriented modeling approach, where the modeler creates objects that inherit from Model to break large systems down into subsystems and analysis domains. The benefits of this approach include modularity, reusability, and the ability to more closely follow mental models of system hierarchy. For example: two different models for a simple beam, designed by different modelers, should be able to be used interchangeably inside another subsystem (such as an aircraft wing) without either modeler having to write specifically with that use in mind.

When you create a class that inherits from Model, write a .setup() method to create the model’s variables and return its constraints. GPkit.Model.__init__ will call that method and automatically add your model’s name and unique ID to any created variables.

Variables created in a setup method are added to the model even if they are not present in any constraints. This allows for simplistic ‘template’ models, which assume constant values for parameters and can grow incrementally in complexity as those variables are freed.

At the end of this page a detailed example shows this technique in practice.

Accessing Variables in Models

GPkit provides several ways to access a Variable in a Model (or ConstraintSet):

	using Model.variables_byname(key). This returns all Variables in the Model, as well as in any submodels, that match the key.

	using Model.topvar(key). This returns the top-level Variable that matches the key. The Variable must appear at the top level, not in a submodel.

	using Model.__getitem__. Model[key] returns the only variable matching the key, even if the match occurs in a submodel. If multiple variables match the key, an error is raised.

These methods are illustrated in the following example.

"Demo of accessing variables in models"
from gpkit import Model, Variable

class Battery(Model):
 """A simple battery

 Upper Unbounded

 m

 Lower Unbounded

 E

 """
 def setup(self):
 h = Variable("h", 200, "Wh/kg", "specific energy")
 E = self.E = Variable("E", "MJ", "stored energy")
 m = self.m = Variable("m", "lb", "battery mass")
 return [E <= m*h]

class Motor(Model):
 """Electric motor

 Upper Unbounded

 m

 Lower Unbounded

 Pmax

 """
 def setup(self):
 m = self.m = Variable("m", "lb", "motor mass")
 f = Variable("f", 20, "lb/hp", "mass per unit power")
 Pmax = self.Pmax = Variable("P_{max}", "hp", "max output power")
 return [m >= f*Pmax]

class PowerSystem(Model):
 """A battery powering a motor

 Upper Unbounded

 m

 Lower Unbounded

 E, Pmax

 """
 def setup(self):
 battery, motor = Battery(), Motor()
 components = [battery, motor]
 m = self.m = Variable("m", "lb", "mass")
 self.E = battery.E
 self.Pmax = motor.Pmax

 return [components,
 m >= sum(comp.m for comp in components)]

PS = PowerSystem()
print "Getting the only var 'E': ", PS["E"]
print "The top-level var 'm': ", PS.topvar("m")
print "All the variables 'm': ", PS.variables_byname("m")

Getting the only var 'E': E_PowerSystem/Battery [MJ]
The top-level var 'm': m_PowerSystem [lb]
All the variables 'm': [gpkit.Variable(m_PowerSystem [lb]), gpkit.Variable(m_PowerSystem/Battery [lb]), gpkit.Variable(m_PowerSystem/Motor [lb])]

Vectorization

gpkit.Vectorize creates an environment in which Variables are created with an additional dimension:

"from gpkit/tests/t_vars.py"

def test_shapes(self):
 with gpkit.Vectorize(3):
 with gpkit.Vectorize(5):
 y = gpkit.Variable("y")
 x = gpkit.VectorVariable(2, "x")
 z = gpkit.VectorVariable(7, "z")

 self.assertEqual(y.shape, (5, 3))
 self.assertEqual(x.shape, (2, 5, 3))
 self.assertEqual(z.shape, (7, 3))

This allows models written with scalar constraints to be created with vector constraints:

"Vectorization demonstration"
from gpkit import Model, Variable, Vectorize

class Test(Model):
 """A simple scalar model

 Upper Unbounded

 x
 """
 def setup(self):
 x = self.x = Variable("x")
 return [x >= 1]

print "SCALAR"
m = Test()
m.cost = m["x"]
print m.solve(verbosity=0).summary()

print "__________\n"
print "VECTORIZED"
with Vectorize(3):
 m = Test()
m.cost = m["x"].prod()
m.append(m["x"][1] >= 2)
print m.solve(verbosity=0).summary()

SCALAR

Cost

 1

Free Variables

x : 1

VECTORIZED

Cost

 2

Free Variables

x : [1 2 1]

Multipoint analysis modeling

In many engineering models, there is a physical object that is operated in multiple conditions. Some variables correspond to the design of the object (size, weight, construction) while others are vectorized over the different conditions (speed, temperature, altitude). By combining named models and vectorization we can create intuitive representations of these systems while maintaining modularity and interoperability.

In the example below, the models Aircraft and Wing have a .dynamic() method which creates instances of AircraftPerformance and WingAero, respectively. The Aircraft and Wing models create variables, such as size and weight without fuel, that represent a physical object. The dynamic models create properties that change based on the flight conditions, such as drag and fuel weight.

This means that when an aircraft is being optimized for a mission, you can create the aircraft (AC in this example) and then pass it to a Mission model which can create vectorized aircraft performance models for each flight segment and/or flight condition.

"""Modular aircraft concept"""
import numpy as np
from gpkit import Model, Vectorize, parse_variables

class AircraftP(Model):
 """Aircraft flight physics: weight <= lift, fuel burn

 Variables

 Wfuel [lbf] fuel weight
 Wburn [lbf] segment fuel burn

 Upper Unbounded

 Wburn, aircraft.wing.c, aircraft.wing.A

 Lower Unbounded

 Wfuel, aircraft.W

 """
 def setup(self, aircraft, state):
 self.aircraft = aircraft
 self.state = state
 exec parse_variables(AircraftP.__doc__)

 self.wing_aero = aircraft.wing.dynamic(aircraft.wing, state)
 self.perf_models = [self.wing_aero]

 W = aircraft.W
 S = aircraft.wing.S

 V = state.V
 rho = state.rho

 D = self.wing_aero.D
 CL = self.wing_aero.CL

 return [W + Wfuel <= 0.5*rho*CL*S*V**2,
 Wburn >= 0.1*D], self.perf_models

class Aircraft(Model):
 """The vehicle model

 Variables

 W [lbf] weight

 Upper Unbounded

 W

 Lower Unbounded

 wing.c, wing.S
 """
 def setup(self):
 exec parse_variables(Aircraft.__doc__)
 self.fuse = Fuselage()
 self.wing = Wing()
 self.components = [self.fuse, self.wing]

 return self.components, W >= sum(c.W for c in self.components)

 dynamic = AircraftP

class FlightState(Model):
 """Context for evaluating flight physics

 Variables

 V 40 [knots] true airspeed
 mu 1.628e-5 [N*s/m^2] dynamic viscosity
 rho 0.74 [kg/m^3] air density

 """
 def setup(self):
 exec parse_variables(FlightState.__doc__)

class FlightSegment(Model):
 """Combines a context (flight state) and a component (the aircraft)

 Upper Unbounded

 Wburn, aircraft.wing.c, aircraft.wing.A

 Lower Unbounded

 Wfuel, aircraft.W

 """
 def setup(self, aircraft):
 self.aircraft = aircraft

 self.flightstate = FlightState()
 self.aircraftp = aircraft.dynamic(aircraft, self.flightstate)

 self.Wburn = self.aircraftp.Wburn
 self.Wfuel = self.aircraftp.Wfuel

 return self.flightstate, self.aircraftp

class Mission(Model):
 """A sequence of flight segments

 Upper Unbounded

 aircraft.wing.c, aircraft.wing.A

 Lower Unbounded

 aircraft.W
 """
 def setup(self, aircraft):
 self.aircraft = aircraft

 with Vectorize(4): # four flight segments
 self.fs = FlightSegment(aircraft)

 Wburn = self.fs.aircraftp.Wburn
 Wfuel = self.fs.aircraftp.Wfuel
 self.takeoff_fuel = Wfuel[0]

 return self.fs, [Wfuel[:-1] >= Wfuel[1:] + Wburn[:-1],
 Wfuel[-1] >= Wburn[-1]]

class WingAero(Model):
 """Wing aerodynamics

 Variables

 CD [-] drag coefficient
 CL [-] lift coefficient
 e 0.9 [-] Oswald efficiency
 Re [-] Reynold's number
 D [lbf] drag force

 Upper Unbounded

 D, wing.c, wing.A

 Lower Unbounded

 CL, wing.S
 """
 def setup(self, wing, state):
 self.wing = wing
 exec parse_variables(WingAero.__doc__)

 c = wing.c
 A = wing.A
 S = wing.S
 rho = state.rho
 V = state.V
 mu = state.mu

 return [
 CD >= 0.074/Re**0.2 + CL**2/np.pi/A/e,
 Re == rho*V*c/mu,
 D >= 0.5*rho*V**2*CD*S]

class Wing(Model):
 """Aircraft wing model

 Variables

 W [lbf] weight
 S [ft^2] surface area
 rho 1 [lbf/ft^2] areal density
 A 27 [-] aspect ratio
 c [ft] mean chord

 Upper Unbounded

 W

 Lower Unbounded

 c, S
 """
 def setup(self):
 exec parse_variables(Wing.__doc__)
 return [W >= S*rho, c == (S/A)**0.5]

 dynamic = WingAero

class Fuselage(Model):
 """The thing that carries the fuel, engine, and payload

 A full model is left as an exercise for the reader.

 Variables

 W 100 [lbf] weight

 """
 def setup(self):
 exec parse_variables(Fuselage.__doc__)

AC = Aircraft()
MISSION = Mission(AC)
M = Model(MISSION.takeoff_fuel, [MISSION, AC])
sol = M.solve(verbosity=0)

vars_of_interest = set(AC.varkeys)
vars_of_interest.update(MISSION.fs.aircraftp.unique_varkeys)
vars_of_interest.add("D")
print sol.summary(vars_of_interest)

Note that the output table can be filtered with a list of variables to show.

Cost

 1.091 [lbf]

Free Variables

 | Aircraft
 W : 144.1 [lbf] weight

 | Aircraft/Wing
 S : 44.14 [ft**2] surface area
 W : 44.14 [lbf] weight
 c : 1.279 [ft] mean chord

 | Mission/FlightSegment/AircraftP
Wburn : [0.274 0.273 0.272 0.272] [lbf] segment fuel burn
Wfuel : [1.09 0.817 0.544 0.272] [lbf] fuel weight

 | Mission/FlightSegment/AircraftP/WingAero
 D : [2.74 2.73 2.72 2.72] [lbf] drag force

Sensitivities

 | Aircraft/Fuselage
 W : +0.97 weight

 | Aircraft/Wing
 A : -0.67 aspect ratio
rho : +0.43 areal density

Next Largest Sensitivities

 | Mission/FlightSegment/AircraftP/WingAero
 e : [-0.18 -0.18 -0.18 -0.18] Oswald efficiency

 | Mission/FlightSegment/FlightState
 V : [-0.22 -0.21 -0.21 -0.21] true airspeed
rho : [-0.12 -0.11 -0.11 -0.11] air density

Advanced Commands

Derived Variables

Evaluated Fixed Variables

Some fixed variables may be derived from the values of other fixed variables.
For example, air density, viscosity, and temperature are functions of altitude.
These can be represented by a substitution or value that is a one-argument function
accepting model.substitutions (for details, see Substitutions below).

code from t_GPSubs.test_calcconst in tests/t_sub.py
x = Variable("x", "hours")
t_day = Variable("t_{day}", 12, "hours")
t_night = Variable("t_{night}", lambda c: 24 - c[t_day], "hours")
note that t_night has a function as its value
m = Model(x, [x >= t_day, x >= t_night])
sol = m.solve(verbosity=0)
self.assertAlmostEqual(sol(t_night)/gpkit.ureg.hours, 12)
m.substitutions.update({t_day: ("sweep", [8, 12, 16])})
sol = m.solve(verbosity=0)
self.assertEqual(len(sol["cost"]), 3)
npt.assert_allclose(sol(t_day) + sol(t_night), 24)

Evaluated Free Variables

Some free variables may be evaluated from the values of other (non-evaluated) free variables
after the optimization is performed. For example, if the efficiency \(\nu\) of a motor is not a GP-compatible
variable, but \((1-\nu)\) is a valid GP variable, then \(\nu\) can be calculated after solving.
These evaluated free variables can be represented by a Variable with evalfn metadata.
Note that this variable should not be used in constructing your model!

code from t_constraints.test_evalfn in tests/t_sub.py
x = Variable("x")
x2 = Variable("x^2", evalfn=lambda v: v[x]**2)
m = Model(x, [x >= 2])
m.unique_varkeys = set([x2.key])
sol = m.solve(verbosity=0)
self.assertAlmostEqual(sol(x2), sol(x)**2)

For evaluated variables that can be used during a solution, see externalfn under Sequential Geometric Programs.

Sweeps

Sweeps are useful for analyzing tradeoff surfaces. A sweep “value” is an Iterable of numbers, e.g. [1, 2, 3]. The simplest way to sweep a model is to call model.sweep({sweepvar: sweepvalues}), which will return a solution array but not change the model’s substitutions dictionary. If multiple sweepvars are given, the method will run them all as independent one-dimensional sweeps and return a list of one solution per sweep. The method model.autosweep({sweepvar: (start, end)}, tol=0.01) behaves very similarly, except that only the bounds of the sweep need be specified and the region in betwen will be swept to a maximum possible error of tol in the log of the cost. For details see 1D Autosweeps below.

Sweep Substitutions

Alternatively, or to sweep a higher-dimensional grid, Variables can swept with a substitution value takes the form ('sweep', Iterable), such as ('sweep', np.linspace(1e6, 1e7, 100)). During variable declaration, giving an Iterable value for a Variable is assumed to be giving it a sweep value: for example, x = Variable("x", [1, 2, 3]) will sweep x over three values.

Vector variables may also be substituted for: {y: ("sweep" ,[[1, 2], [1, 2], [1, 2]])} will sweep \(y\ \forall~y_i\in\left\{1,2\right\}\). These sweeps cannot be specified during Variable creation.

A Model with sweep substitutions will solve for all possible combinations: e.g., if there’s a variable x with value ('sweep', [1, 3]) and a variable y with value ('sweep', [14, 17]) then the gp will be solved four times, for \((x,y)\in\left\{(1, 14),\ (1, 17),\ (3, 14),\ (3, 17)\right\}\). The returned solutions will be a one-dimensional array (or 2-D for vector variables), accessed in the usual way.

1D Autosweeps

If you’re only sweeping over a single variable, autosweeping lets you specify a
tolerance for cost error instead of a number of exact positions to solve at.
GPkit will then search the sweep segment for a locally optimal number of sweeps
that can guarantee a max absolute error on the log of the cost.

Accessing variable and cost values from an autosweep is slightly different, as
can be seen in this example:

"Show autosweep_1d functionality"
import numpy as np
import gpkit
from gpkit import units, Variable, Model
from gpkit.tools.autosweep import autosweep_1d
from gpkit.small_scripts import mag

A = Variable("A", "m**2")
l = Variable("l", "m")

m1 = Model(A**2, [A >= l**2 + units.m**2])
tol1 = 1e-3
bst1 = autosweep_1d(m1, tol1, l, [1, 10], verbosity=0)
print "Solved after %2i passes, cost logtol +/-%.3g" % (bst1.nsols, bst1.tol)
autosweep solution accessing
l_vals = np.linspace(1, 10, 10)
sol1 = bst1.sample_at(l_vals)
print "values of l:", l_vals
print "values of A:", sol1("A")
cost_estimate = sol1["cost"]
cost_lb, cost_ub = sol1.cost_lb(), sol1.cost_ub()
print "cost lower bound:", cost_lb
print "cost estimate: ", cost_estimate
print "cost upper bound:", cost_ub
you can evaluate arbitrary posynomials
np.testing.assert_allclose(mag(2*sol1(A)), mag(sol1(2*A)))
assert (sol1["cost"] == sol1(A**2)).all()
the cost estimate is the logspace mean of its upper and lower bounds
np.testing.assert_allclose((np.log(mag(cost_lb)) + np.log(mag(cost_ub)))/2,
 np.log(mag(cost_estimate)))

this problem is two intersecting lines in logspace
m2 = Model(A**2, [A >= (l/3)**2, A >= (l/3)**0.5 * units.m**1.5])
tol2 = {"mosek": 1e-12, "cvxopt": 1e-7,
 "mosek_cli": 1e-6}[gpkit.settings["default_solver"]]
bst2 = autosweep_1d(m2, tol2, l, [1, 10], verbosity=0)
print "Solved after %2i passes, cost logtol +/-%.3g" % (bst2.nsols, bst2.tol)
print "Table of solutions used in the autosweep:"
print bst2.solarray.table()

If you need access to the raw solutions arrays, the smallest simplex tree containing
any given point can be gotten with min_bst = bst.min_bst(val), the extents of that tree with bst.bounds and solutions of that tree with bst.sols. More information is in help(bst).

Tight ConstraintSets

Tight ConstraintSets will warn if any inequalities they contain are not
tight (that is, the right side does not equal the left side) after solving. This
is useful when you know that a constraint _should_ be tight for a given model,
but reprenting it as an equality would be non-convex.

from gpkit import Variable, Model
from gpkit.constraints.tight import Tight

Tight.reltol = 1e-2 # set the global tolerance of Tight
x = Variable('x')
x_min = Variable('x_{min}', 2)
m = Model(x, [Tight([x >= 1], reltol=1e-3), # set the specific tolerance
 x >= x_min])
m.solve(verbosity=0) # prints warning

Substitutions

Substitutions are a general-purpose way to change every instance of one variable into either a number or another variable.

Substituting into Posynomials, NomialArrays, and GPs

The examples below all use Posynomials and NomialArrays, but the syntax is identical for GPs (except when it comes to sweep variables).

adapted from t_sub.py / t_NomialSubs / test_Basic
from gpkit import Variable
x = Variable("x")
p = x**2
assert p.sub(x, 3) == 9
assert p.sub(x.varkeys["x"], 3) == 9
assert p.sub("x", 3) == 9

Here the variable x is being replaced with 3 in three ways: first by substituting for x directly, then by substituting for the VarKey("x"), then by substituting the string “x”. In all cases the substitution is understood as being with the VarKey: when a variable is passed in the VarKey is pulled out of it, and when a string is passed in it is used as an argument to the Posynomial’s varkeys dictionary.

Substituting multiple values

adapted from t_sub.py / t_NomialSubs / test_Vector
from gpkit import Variable, VectorVariable
x = Variable("x")
y = Variable("y")
z = VectorVariable(2, "z")
p = x*y*z
assert all(p.sub({x: 1, "y": 2}) == 2*z)
assert all(p.sub({x: 1, y: 2, "z": [1, 2]}) == z.sub(z, [2, 4]))

To substitute in multiple variables, pass them in as a dictionary where the keys are what will be replaced and values are what it will be replaced with. Note that you can also substitute for VectorVariables by their name or by their NomialArray.

Substituting with nonnumeric values

You can also substitute in sweep variables (see Sweeps), strings, and monomials:

adapted from t_sub.py / t_NomialSubs
from gpkit import Variable
from gpkit.small_scripts import mag

x = Variable("x", "m")
xvk = x.varkeys.values()[0]
descr_before = x.exp.keys()[0].descr
y = Variable("y", "km")
yvk = y.varkeys.values()[0]
for x_ in ["x", xvk, x]:
 for y_ in ["y", yvk, y]:
 if not isinstance(y_, str) and type(xvk.units) != str:
 expected = 0.001
 else:
 expected = 1.0
 assert abs(expected - mag(x.sub(x_, y_).c)) < 1e-6
if type(xvk.units) != str:
 # this means units are enabled
 z = Variable("z", "s")
 # y.sub(y, z) will raise ValueError due to unit mismatch

Note that units are preserved, and that the value can be either a string (in which case it just renames the variable), a varkey (in which case it changes its description, including the name) or a Monomial (in which case it substitutes for the variable with a new monomial).

Updating ConstraintSet substitutions

ConstraintSets have a .substitutions KeyDict attribute which will be substituted before solving.
This KeyDict accepts variable names, VarKeys, and Variable objects as keys, and can be updated (or deleted from)
like a regular Python dictionary to change the substitutions that will be used at solve-time. If a ConstraintSet itself
contains ConstraintSets, it and all its elements share pointers to the same substitutions dictionary object,
so that updating any one of them will update all of them.

Substituting with replacement

Any of the substitutions above can be run with p.subinplace(*args) to substitute directly into the object in question.

Fixed Variables

When a Model is created, any fixed Variables are used to form a dictionary: {var: var.descr["value"] for var in self.varlocs if "value" in var.descr}. This dictionary in then substituted into the Model’s cost and constraints before the substitutions argument is (and hence values are supplanted by any later substitutions).

solution.subinto(p) will substitute the solution(s) for variables into the posynomial p, returning a NomialArray. For a non-swept solution, this is equivalent to p.sub(solution["variables"]).

You can also substitute by just calling the solution, i.e. solution(p). This returns a numpy array of just the coefficients (c) of the posynomial after substitution, and will raise a` ValueError` if some of the variables in p were not found in solution.

Freeing Fixed Variables

After creating a Model, it may be useful to “free” a fixed variable and resolve. This can be done using the command del m.substitutions["x"], where m is a Model. An example of how to do this is shown below.

from gpkit import Variable, Model
x = Variable("x")
y = Variable("y", 3) # fix value to 3
m = Model(x, [x >= 1 + y, y >= 1])
_ = m.solve() # optimal cost is 4; y appears in sol["constants"]

del m.substitutions["y"]
_ = m.solve() # optimal cost is 2; y appears in Free Variables

Note that del m.substitutions["y"] affects m but not y.key.
y.value will still be 3, and if y is used in a new model,
it will still carry the value of 3.

Composite Objectives

Given \(n\) posynomial objectives \(g_i\), you can sweep out the problem’s Pareto frontier with the composite objective:

\(g_0 w_0 \prod_{i\not=0} v_i + g_1 w_1 \prod_{i\not=1} v_i + ... + g_n \prod_i v_i\)

where \(i \in 0 ... n-1\) and \(v_i = 1- w_i\) and \(w_i \in [0, 1]\)

GPkit has the helper function composite_objective for constructing these.

import numpy as np
import gpkit

L, W = gpkit.Variable("L"), gpkit.Variable("W")

eqns = [L >= 1, W >= 1, L*W == 10]

co_sweep = [0] + np.logspace(-6, 0, 10).tolist()

obj = gpkit.tools.composite_objective(L+W, W**-1 * L**-3,
 normsub={L:10, W: 10},
 sweep=co_sweep)

m = gpkit.Model(obj, eqns)
m.solve()

The normsub argument specifies an expected value for your solution to normalize the different \(g_i\) (you can also do this by hand). The feasibility of the problem should not depend on the normalization, but the spacing of the sweep will.

The sweep argument specifies what points between 0 and 1 you wish to sample the weights at. If you want different resolutions or spacings for different weights, the sweeps argument accepts a list of sweep arrays.

Signomial Programming

Signomial programming finds a local solution to a problem of the form:

\[\begin{split}\begin{array}{lll}\text{}
\text{minimize} & g_0(x) & \\
\text{subject to} & f_i(x) = 1, & i = 1,....,m \\
 & g_i(x) - h_i(x) \leq 1, & i = 1,....,n
 \end{array}\end{split}\]

where each \(f\) is monomial while each \(g\) and \(h\) is a posynomial.

This requires multiple solutions of geometric programs, and so will take longer to solve than an equivalent geometric programming formulation.

In general, when given the choice of which variables to include in the positive-posynomial / \(g\) side of the constraint, the modeler should:

	maximize the number of variables in \(g\),

	prioritize variables that are in the objective,

	then prioritize variables that are present in other constraints.

The .localsolve syntax was chosen to emphasize that signomial programming returns a local optimum. For the same reason, calling .solve on an SP will raise an error.

By default, signomial programs are first solved conservatively (by assuming each \(h\) is equal only to its constant portion) and then become less conservative on each iteration.

Example Usage

"""Adapted from t_SP in tests/t_geometric_program.py"""
import gpkit

Decision variables
x = gpkit.Variable('x')
y = gpkit.Variable('y')

must enable signomials for subtraction
with gpkit.SignomialsEnabled():
 constraints = [x >= 1-y, y <= 0.1]

create and solve the SP
m = gpkit.Model(x, constraints)
print m.localsolve(verbosity=0).summary()
assert abs(m.solution(x) - 0.9) < 1e-6

When using the localsolve method, the reltol argument specifies the relative tolerance of the solver: that is, by what percent does the solution have to improve between iterations? If any iteration improves less than that amount, the solver stops and returns its value.

If you wish to start the local optimization at a particular point \(x_k\), however, you may do so by putting that position (a dictionary formatted as you would a substitution) as the xk argument.

Sequential Geometric Programs

The method of solving local GP approximations of a non-GP compatible model can be generalized, at the cost of the general smoothness and lack of a need for trust regions that SPs guarantee.

For some applications, it is useful to call external codes which may not be GP compatible. Imagine we wished to solve the following optimization problem:

\[\begin{split}\begin{array}{lll}\text{}
\text{minimize} & y & \\
\text{subject to} & y \geq \sin(x) \\
 & \frac{\pi}{4} \leq x \leq \frac{\pi}{2}
 \end{array}\end{split}\]

This problem is not GP compatible due to the sin(x) constraint. One approach might be to take the first term of the Taylor expansion of sin(x) and attempt to solve:

"Can be found in gpkit/docs/source/examples/sin_approx_example.py"
import numpy as np
from gpkit import Variable, Model

x = Variable("x")
y = Variable("y")

objective = y

constraints = [y >= x,
 x <= np.pi/2.,
 x >= np.pi/4.,
]

m = Model(objective, constraints)
print m.solve(verbosity=0).summary()

Cost

 0.7854

Free Variables

x : 0.7854
y : 0.7854

We can do better, however, by utilizing some built in functionality of GPkit.
For simple cases with a single Variable, GPkit looks for externalfn metadata:

"Can be found in gpkit/docs/source/examples/external_sp2.py"
import numpy as np
from gpkit import Variable, Model

x = Variable("x")

def y_ext(self, x0):
 "Returns constraints on y derived from x0"
 if x not in x0:
 return self >= x
 return self >= x/x0[x] * np.sin(x0[x])

y = Variable("y", externalfn=y_ext)

m = Model(y, [np.pi/4 <= x, x <= np.pi/2])
print m.localsolve(verbosity=0).summary()

Cost

 0.7071

Free Variables

x : 0.7854
y : 0.7071

However, for external functions not intrinsically tied to a single variable it’s best to
use the full ConstraintSet API, as follows:

Assume we have some external code which is capable of evaluating our incompatible function:

"""External function for GPkit to call. Can be found
in gpkit/docs/source/examples/external_function.py"""
import numpy as np

def external_code(x):
 "Returns sin(x)"
 return np.sin(x)

Now, we can create a ConstraintSet that allows GPkit to treat the incompatible constraint as though it were a signomial programming constraint:

"Can be found in gpkit/docs/source/examples/external_constraint.py"
from gpkit.exceptions import InvalidGPConstraint
from external_function import external_code

class ExternalConstraint(object):
 "Class for external calling"
 varkeys = {}

 def __init__(self, x, y):
 # We need a GPkit variable defined to return in our constraint. The
 # easiest way to do this is to read in the parameters of interest in
 # the initiation of the class and store them here.
 self.x = x
 self.y = y

 def as_posyslt1(self, _):
 "Ensures this is treated as an SGP constraint"
 raise InvalidGPConstraint("ExternalConstraint cannot solve as a GP.")

 def as_gpconstr(self, x0, _):
 "Returns locally-approximating GP constraint"

 # Unpacking the GPkit variables
 x = self.x
 y = self.y

 # Creating a default constraint for the first solve
 if not x0:
 return (y >= x)

 # Returns constraint updated with new call to the external code
 else:
 # Unpack Design Variables at the current point
 x_star = x0["x"]

 # Call external code
 res = external_code(x_star)

 # Return linearized constraint
 return (y >= res*x/x_star)

and replace the incompatible constraint in our GP:

"Can be found in gpkit/docs/source/examples/external_sp.py"

import numpy as np
from gpkit import Variable, Model
from external_constraint import ExternalConstraint

x = Variable("x")
y = Variable("y")

objective = y

constraints = [ExternalConstraint(x, y),
 x <= np.pi/2.,
 x >= np.pi/4.,
]

m = Model(objective, constraints)
print m.localsolve(verbosity=0).summary()

Cost

 0.7071

Free Variables

x : 0.7854
y : 0.7071

which is the expected result. This method has been generalized to larger problems, such as calling XFOIL and AVL.

If you wish to start the local optimization at a particular point \(x_0\), however, you may do so by putting that position (a dictionary formatted as you would a substitution) as the x0 argument

Examples

iPython Notebook Examples

More examples, including some with in-depth explanations and interactive visualizations, can be seen on nbviewer [http://nbviewer.ipython.org/github/convexengineering/gpkit/tree/master/docs/source/ipynb/].

A Trivial GP

The most trivial GP we can think of:
minimize \(x\) subject to the constraint \(x \ge 1\).

"Very simple problem: minimize x while keeping x greater than 1."
from gpkit import Variable, Model

Decision variable
x = Variable("x")

Constraint
constraints = [x >= 1]

Objective (to minimize)
objective = x

Formulate the Model
m = Model(objective, constraints)

Solve the Model
sol = m.solve(verbosity=0)

print selected results
print("Optimal cost: %s" % sol["cost"])
print("Optimal x val: %s" % sol(x))

Of course, the optimal value is 1. Output:

Optimal cost: 1.0000000000039595
Optimal x val: 1.0 dimensionless

Maximizing the Volume of a Box

This example comes from Section 2.4 of the GP tutorial [http://stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf], by S. Boyd et. al.

"Maximizes box volume given area and aspect ratio constraints."
from gpkit import Variable, Model

Parameters
alpha = Variable("alpha", 2, "-", "lower limit, wall aspect ratio")
beta = Variable("beta", 10, "-", "upper limit, wall aspect ratio")
gamma = Variable("gamma", 2, "-", "lower limit, floor aspect ratio")
delta = Variable("delta", 10, "-", "upper limit, floor aspect ratio")
A_wall = Variable("A_{wall}", 200, "m^2", "upper limit, wall area")
A_floor = Variable("A_{floor}", 50, "m^2", "upper limit, floor area")

Decision variables
h = Variable("h", "m", "height")
w = Variable("w", "m", "width")
d = Variable("d", "m", "depth")

Constraints
constraints = [A_wall >= 2*h*w + 2*h*d,
 A_floor >= w*d,
 h/w >= alpha,
 h/w <= beta,
 d/w >= gamma,
 d/w <= delta]

Objective function
V = h*w*d
objective = 1/V # To maximize V, we minimize its reciprocal

Formulate the Model
m = Model(objective, constraints)

Solve the Model and print the results table
print m.solve(verbosity=0).table()

The output is

Cost

 0.003674 [1/m**3]

Free Variables

d : 8.17 [m] depth
h : 8.163 [m] height
w : 4.081 [m] width

Constants

A_{floor} : 50 [m**2] upper limit, floor area
 A_{wall} : 200 [m**2] upper limit, wall area
 alpha : 2 lower limit, wall aspect ratio
 beta : 10 upper limit, wall aspect ratio
 delta : 10 upper limit, floor aspect ratio
 gamma : 2 lower limit, floor aspect ratio

Sensitivities

 A_{wall} : -1.5 upper limit, wall area
 alpha : +0.5 lower limit, wall aspect ratio
 gamma : +0.0003 lower limit, floor aspect ratio
A_{floor} : -5.7e-09 upper limit, floor area
 beta : -1.4e-09 upper limit, wall aspect ratio
 delta : -1.4e-09 upper limit, floor aspect ratio

Water Tank

Say we had a fixed mass of water we wanted to contain within a tank, but also wanted to minimize the cost of the material we had to purchase (i.e. the surface area of the tank):

"Minimizes cylindrical tank surface area for a particular volume."
from gpkit import Variable, VectorVariable, Model

M = Variable("M", 100, "kg", "Mass of Water in the Tank")
rho = Variable("\\rho", 1000, "kg/m^3", "Density of Water in the Tank")
A = Variable("A", "m^2", "Surface Area of the Tank")
V = Variable("V", "m^3", "Volume of the Tank")
d = VectorVariable(3, "d", "m", "Dimension Vector")

constraints = (A >= 2*(d[0]*d[1] + d[0]*d[2] + d[1]*d[2]),
 V == d[0]*d[1]*d[2],
 M == V*rho)

m = Model(A, constraints)
sol = m.solve(verbosity=0)
print sol.summary()

The output is

Cost

 1.293 [m**2]

Free Variables

A : 1.293 [m**2] Surface Area of the Tank
V : 0.1 [m**3] Volume of the Tank
d : [0.464 0.464 0.464] [m] Dimension Vector

Sensitivities

 M : +0.67 Mass of Water in the Tank
\rho : -0.67 Density of Water in the Tank

Simple Wing

This example comes from Section 3 of Geometric Programming for Aircraft Design Optimization [http://web.mit.edu/~whoburg/www/papers/hoburgabbeel2014.pdf], by W. Hoburg and P. Abbeel.

"Minimizes airplane drag for a simple drag and structure model."
import numpy as np
from gpkit import Variable, Model
pi = np.pi

Constants
k = Variable("k", 1.2, "-", "form factor")
e = Variable("e", 0.95, "-", "Oswald efficiency factor")
mu = Variable("\\mu", 1.78e-5, "kg/m/s", "viscosity of air")
rho = Variable("\\rho", 1.23, "kg/m^3", "density of air")
tau = Variable("\\tau", 0.12, "-", "airfoil thickness to chord ratio")
N_ult = Variable("N_{ult}", 3.8, "-", "ultimate load factor")
V_min = Variable("V_{min}", 22, "m/s", "takeoff speed")
C_Lmax = Variable("C_{L,max}", 1.5, "-", "max CL with flaps down")
S_wetratio = Variable("(\\frac{S}{S_{wet}})", 2.05, "-", "wetted area ratio")
W_W_coeff1 = Variable("W_{W_{coeff1}}", 8.71e-5, "1/m",
 "Wing Weight Coefficent 1")
W_W_coeff2 = Variable("W_{W_{coeff2}}", 45.24, "Pa",
 "Wing Weight Coefficent 2")
CDA0 = Variable("(CDA0)", 0.031, "m^2", "fuselage drag area")
W_0 = Variable("W_0", 4940.0, "N", "aircraft weight excluding wing")

Free Variables
D = Variable("D", "N", "total drag force")
A = Variable("A", "-", "aspect ratio")
S = Variable("S", "m^2", "total wing area")
V = Variable("V", "m/s", "cruising speed")
W = Variable("W", "N", "total aircraft weight")
Re = Variable("Re", "-", "Reynold's number")
C_D = Variable("C_D", "-", "Drag coefficient of wing")
C_L = Variable("C_L", "-", "Lift coefficent of wing")
C_f = Variable("C_f", "-", "skin friction coefficient")
W_w = Variable("W_w", "N", "wing weight")

constraints = []

Drag model
C_D_fuse = CDA0/S
C_D_wpar = k*C_f*S_wetratio
C_D_ind = C_L**2/(pi*A*e)
constraints += [C_D >= C_D_fuse + C_D_wpar + C_D_ind]

Wing weight model
W_w_strc = W_W_coeff1*(N_ult*A**1.5*(W_0*W*S)**0.5)/tau
W_w_surf = W_W_coeff2 * S
constraints += [W_w >= W_w_surf + W_w_strc]

and the rest of the models
constraints += [D >= 0.5*rho*S*C_D*V**2,
 Re <= (rho/mu)*V*(S/A)**0.5,
 C_f >= 0.074/Re**0.2,
 W <= 0.5*rho*S*C_L*V**2,
 W <= 0.5*rho*S*C_Lmax*V_min**2,
 W >= W_0 + W_w]

print("SINGLE\n======")
m = Model(D, constraints)
sol = m.solve(verbosity=0)
print(sol.summary())

print("SWEEP\n=====")
N = 2
sweeps = {V_min: ("sweep", np.linspace(20, 25, N)),
 V: ("sweep", np.linspace(45, 55, N)), }
m.substitutions.update(sweeps)
sweepsol = m.solve(verbosity=0)
print(sweepsol.summary())

The output is

SINGLE
======

Cost

 303.1 [N]

Free Variables

 A : 8.46 aspect ratio
C_D : 0.02059 Drag coefficient of wing
C_L : 0.4988 Lift coefficent of wing
C_f : 0.003599 skin friction coefficient
 D : 303.1 [N] total drag force
 Re : 3.675e+06 Reynold's number
 S : 16.44 [m**2] total wing area
 V : 38.15 [m/s] cruising speed
 W : 7341 [N] total aircraft weight
W_w : 2401 [N] wing weight

Most Sensitive

 W_0 : +1 aircraft weight excluding wing
 e : -0.48 Oswald efficiency factor
(\frac{S}{S_{wet}}) : +0.43 wetted area ratio
 k : +0.43 form factor
 V_{min} : -0.37 takeoff speed

SWEEP
=====

Cost

 [338 294 396 326] [N]

Sweep Variables

 V : [45 45 55 55] [m/s] cruising speed
V_{min} : [20 25 20 25] [m/s] takeoff speed

Free Variables

 A : [6.2 8.84 4.77 7.16] aspect ratio
C_D : [0.0146 0.0196 0.0123 0.0157] Drag coefficient of wing
C_L : [0.296 0.463 0.198 0.31] Lift coefficent of wing
C_f : [0.00333 0.00361 0.00314 0.00342] skin friction coefficient
 D : [338 294 396 326] [N] total drag force
 Re : [5.38e+06 3.63e+06 7.24e+06 4.75e+06] Reynold's number
 S : [18.6 12.1 17.3 11.2] [m**2] total wing area
 W : [6.85e+03 6.97e+03 6.4e+03 6.44e+03] [N] total aircraft weight
W_w : [1.91e+03 2.03e+03 1.46e+03 1.5e+03] [N] wing weight

Most Sensitive

 W_0 : [+0.92 +0.95 +0.85 +0.85] aircraft weight excluding wing
 V_{min} : [-0.82 -0.41 -1 -0.71] takeoff speed
 V : [+0.59 +0.25 +0.97 +0.75] cruising speed
(\frac{S}{S_{wet}}) : [+0.56 +0.45 +0.63 +0.54] wetted area ratio
 k : [+0.56 +0.45 +0.63 +0.54] form factor

Simple Beam

In this example we consider a beam subjected to a uniformly distributed transverse force along its length. The beam has fixed geometry so we are not optimizing its shape, rather we are simply solving a discretization of the Euler-Bernoulli beam bending equations using GP.

"""
A simple beam example with fixed geometry. Solves the discretized
Euler-Bernoulli beam equations for a constant distributed load
"""
import numpy as np
from gpkit import Variable, VectorVariable, Model, ureg
from gpkit.small_scripts import mag

class Beam(Model):
 """Discretization of the Euler beam equations for a distributed load.

 Arguments

 N : int
 Number of finite elements that compose the beam.
 L : float
 [m] Length of beam.
 EI : float
 [N m^2] Elastic modulus times cross-section's area moment of inertia.
 q : float or N-vector of floats
 [N/m] Loading density: can be specified as constants or as an array.

 Upper Unbounded

 w_tip
 """
 def setup(self, N=4):
 EI = Variable("EI", 1e4, "N*m^2")
 dx = Variable("dx", "m", "Length of an element")
 L = Variable("L", 5, "m", "Overall beam length")
 q = VectorVariable(N, "q", 100*np.ones(N), "N/m",
 "Distributed load at each point")
 V = VectorVariable(N, "V", "N", "Internal shear")
 V_tip = Variable("V_{tip}", 0, "N", "Tip loading")
 M = VectorVariable(N, "M", "N*m", "Internal moment")
 M_tip = Variable("M_{tip}", 0, "N*m", "Tip moment")
 th = VectorVariable(N, "\\theta", "-", "Slope")
 th_base = Variable("\\theta_{base}", 0, "-", "Base angle")
 w = VectorVariable(N, "w", "m", "Displacement")
 w_base = Variable("w_{base}", 0, "m", "Base deflection")
 # below: trapezoidal integration to form a piecewise-linear
 # approximation of loading, shear, and so on
 # shear and moment increase from tip to base (left > right)
 shear_eq = (V >= V.right + 0.5*dx*(q + q.right))
 shear_eq[-1] = (V[-1] >= V_tip) # tip boundary condition
 moment_eq = (M >= M.right + 0.5*dx*(V + V.right))
 moment_eq[-1] = (M[-1] >= M_tip)
 # slope and displacement increase from base to tip (right > left)
 theta_eq = (th >= th.left + 0.5*dx*(M + M.left)/EI)
 theta_eq[0] = (th[0] >= th_base) # base boundary condition
 displ_eq = (w >= w.left + 0.5*dx*(th + th.left))
 displ_eq[0] = (w[0] >= w_base)
 # minimize tip displacement (the last w)
 self.cost = self.w_tip = w[-1]
 return [shear_eq, moment_eq, theta_eq, displ_eq,
 L == (N-1)*dx]

b = Beam(N=6, substitutions={"L": 6, "EI": 1.1e4, "q": 110*np.ones(6)})
b.zero_lower_unbounded_variables()
sol = b.solve(verbosity=0)
print sol.summary()
w_gp = sol("w") # deflection along beam

L, EI, q = sol("L"), sol("EI"), sol("q")
x = np.linspace(0, mag(L), len(q))*ureg.m # position along beam
q = q[0] # assume uniform loading for the check below
w_exact = q/(24.*EI) * x**2 * (x**2 - 4*L*x + 6*L**2) # analytic soln

assert max(abs(w_gp - w_exact)) <= 1.1*ureg.cm

PLOT = False
if PLOT:
 import matplotlib.pyplot as plt
 x_exact = np.linspace(0, L, 1000)
 w_exact = q/(24.*EI) * x_exact**2 * (x_exact**2 - 4*L*x_exact + 6*L**2)
 plt.plot(x, w_gp, color='red', linestyle='solid', marker='^',
 markersize=8)
 plt.plot(x_exact, w_exact, color='blue', linestyle='dashed')
 plt.xlabel('x [m]')
 plt.ylabel('Deflection [m]')
 plt.axis('equal')
 plt.legend(['GP solution', 'Analytical solution'])
 plt.show()

The output is

Cost

 1.62 [m]

Free Variables

 dx : 1.2 [m] Length of an element
 M : [1.98e+03 1.27e+03 713 317 ...] [N*m] Internal moment
 V : [660 528 396 264 ...] [N] Internal shear
\theta : [- 0.177 0.285 0.341 ...] Slope
 w : [- 0.106 0.384 0.759 ...] [m] Displacement

Most Sensitive

 L : +4 Overall beam length
EI : -1
 q : [+0.0072 +0.042 +0.12 +0.23 ...] Distributed load at each point

By plotting the deflection, we can see that the agreement between the analytical solution and the GP solution is good.

[image: _images/beam.svg]

Glossary

For an alphabetical listing of all commands, check out the Index

gpkit package

Subpackages

	gpkit.constraints package
	Submodules

	gpkit.constraints.array module

	gpkit.constraints.bounded module

	gpkit.constraints.costed module

	gpkit.constraints.gp module

	gpkit.constraints.model module

	gpkit.constraints.prog_factories module

	gpkit.constraints.relax module

	gpkit.constraints.set module

	gpkit.constraints.sgp module

	gpkit.constraints.sigeq module

	gpkit.constraints.single_equation module

	gpkit.constraints.tight module

	Module contents

	gpkit.interactive package
	Submodules

	gpkit.interactive.chartjs module

	gpkit.interactive.plot_sweep module

	gpkit.interactive.plotting module

	gpkit.interactive.ractor module

	gpkit.interactive.sankey module

	gpkit.interactive.widgets module

	Module contents

	gpkit.nomials package
	Submodules

	gpkit.nomials.array module
	Example

	gpkit.nomials.core module

	gpkit.nomials.data module

	gpkit.nomials.map module

	gpkit.nomials.math module

	gpkit.nomials.substitution module

	gpkit.nomials.variables module

	Module contents

	gpkit.tools package
	Submodules

	gpkit.tools.autosweep module

	gpkit.tools.docstring module

	gpkit.tools.fmincon module

	gpkit.tools.spdata module

	gpkit.tools.tools module

	Module contents

Submodules

gpkit.build module

Finds solvers, sets gpkit settings, and builds gpkit

	
class gpkit.build.CVXopt

	Bases: gpkit.build.SolverBackend

CVXopt finder.

	
look()

	Attempts to import cvxopt.

	
name = 'cvxopt'

	

	
class gpkit.build.Mosek

	Bases: gpkit.build.SolverBackend

MOSEK finder and builder.

	
bin_dir = None

	

	
build()

	Builds a dynamic library to GPKITBUILD or $HOME/.gpkit

	
expopt_files = None

	

	
flags = None

	

	
lib_name = None

	

	
lib_path = None

	

	
look()

	Looks in default install locations for latest mosek version.

	
name = 'mosek'

	

	
patches = {'dgopt.c': {'printf("Number of Hessian non-zeros: %d\\n",nlh[0]->numhesnz);': 'MSK_echotask(task,MSK_STREAM_MSG,"Number of Hessian non-zeros: %d\\n",nlh[0]->numhesnz);'}, 'expopt.c': {'printf("Warning: The variable with index \'%d\' has only positive coefficients akj.\\n The problem is possibly ill-posed.\\n.\\n",i);': 'MSK_echotask(expopttask,MSK_STREAM_MSG, "Warning: The variable with index \'%d\' has only positive coefficients akj.\\n The problem is possibly ill-posed.\\n.\\n",i);', 'printf("Warning: The variable with index \'%d\' has only negative coefficients akj.\\n The problem is possibly ill-posed.\\n",i);': 'MSK_echotask(expopttask,MSK_STREAM_MSG, "Warning: The variable with index \'%d\' has only negative coefficients akj.\\n The problem is possibly ill-posed.\\n",i);', 'printf ("solsta = %d, prosta = %d\\n", (int)*solsta,(int)*prosta);': 'MSK_echotask(expopttask,MSK_STREAM_MSG, "solsta = %d, prosta = %d\\n", (int)*solsta,(int)*prosta);'}}

	

	
version = None

	

	
class gpkit.build.MosekCLI

	Bases: gpkit.build.SolverBackend

MOSEK command line interface finder.

	
look()

	Attempts to run mskexpopt.

	
name = 'mosek_cli'

	

	
class gpkit.build.SolverBackend

	Bases: object

Inheritable class for finding solvers. Logs.

	
build = None

	

	
installed = False

	

	
look = None

	

	
name = None

	

	
gpkit.build.build_gpkit()

	Builds GPkit

	
gpkit.build.call(cmd)

	Calls subprocess. Logs.

	
gpkit.build.diff(filename, diff_dict)

	Applies a simple diff to a file. Logs.

	
gpkit.build.isfile(path)

	Returns true if there’s a file at $path. Logs.

	
gpkit.build.log(*args)

	Print a line and append it to the log string.

	
gpkit.build.pathjoin(*args)

	Join paths, collating multiple arguments.

	
gpkit.build.rebuild()

	Changes to the installed gpkit directory and runs build_gpkit()

	
gpkit.build.replacedir(path)

	Replaces directory at $path. Logs.

gpkit.exceptions module

GPkit-specific Exception classes

	
exception gpkit.exceptions.InvalidGPConstraint

	Bases: exceptions.Exception

Raised when a non-GP-compatible constraint is used in a GP

gpkit.globals module

global mutable variables

	
class gpkit.globals.NamedVariables(model)

	Bases: object

Creates an environment in which all variables have
a model name and num appended to their varkeys.

	
class gpkit.globals.SignomialsEnabled

	Bases: object

Class to put up and tear down signomial support in an instance of GPkit.

>>> import gpkit
>>> x = gpkit.Variable("x")
>>> y = gpkit.Variable("y", 0.1)
>>> with SignomialsEnabled():
>>> constraints = [x >= 1-y]
>>> gpkit.Model(x, constraints).localsolve()

	
class gpkit.globals.Vectorize(dimension_length)

	Bases: object

Creates an environment in which all variables are
exended in an additional dimension.

	
gpkit.globals.begin_variable_naming(model)

	Appends a model name and num to the environment.

	
gpkit.globals.end_variable_naming()

	Pops a model name and num from the environment.

	
gpkit.globals.load_settings(path=None)

	Load the settings file at SETTINGS_PATH; return settings dict

gpkit.keydict module

Implements KeyDict and KeySet classes

	
class gpkit.keydict.KeyDict(*args, **kwargs)

	Bases: dict

KeyDicts do two things over a dict: map keys and collapse arrays.

>>>> kd = gpkit.keydict.KeyDict()

If .keymapping is True, a KeyDict keeps an internal list of VarKeys as
canonical keys, and their values can be accessed with any object whose
key attribute matches one of those VarKeys, or with strings matching
any of the multiple possible string interpretations of each key:

For example, after creating the KeyDict kd and setting kd[x] = v (where x
is a Variable or VarKey), v can be accessed with by the following keys:

	x

	x.key

	x.name (a string)

	“x_modelname” (x’s name including modelname)

Note that if a item is set using a key that does not have a .key
attribute, that key can be set and accessed normally.

If .collapse_arrays is True then VarKeys which have a shape
parameter (indicating they are part of an array) are stored as numpy
arrays, and automatically de-indexed when a matching VarKey with a
particular idx parameter is used as a key.

See also: gpkit/tests/t_keydict.py.

	
collapse_arrays = True

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
keymapping = True

	

	
parse_and_index(key)

	Returns key if key had one, and veckey/idx for indexed veckeys.

	
update(*args, **kwargs)

	Iterates through the dictionary created by args and kwargs

	
update_keymap()

	Updates the keymap with the keys in _unmapped_keys

	
class gpkit.keydict.KeySet(*args, **kwargs)

	Bases: gpkit.keydict.KeyDict

KeyDicts that don’t collapse arrays or store values.

	
add(item)

	Adds an item to the keyset

	
collapse_arrays = False

	

	
update(*args, **kwargs)

	Iterates through the dictionary created by args and kwargs

	
gpkit.keydict.clean_value(key, value)

	Gets the value of variable-less monomials, so that
x.sub({x: gpkit.units.m}) and x.sub({x: gpkit.ureg.m}) are equivalent.

Also converts any quantities to the key’s units, because quantities
can’t/shouldn’t be stored as elements of numpy arrays.

gpkit.repr_conventions module

Repository for representation standards

	
gpkit.repr_conventions.unitstr(units, into='%s', options='~', dimless='')

	Returns the string corresponding to an object’s units.

gpkit.small_classes module

Miscellaneous small classes

	
class gpkit.small_classes.CootMatrix(row, col, data)

	Bases: object

A very simple sparse matrix representation.

	
append(row, col, data)

	Appends entry to matrix.

	
dot(arg)

	Returns dot product with arg.

	
tocoo()

	Converts to another type of matrix.

	
tocsc()

	Converts to another type of matrix.

	
tocsr()

	Converts to a Scipy sparse csr_matrix

	
todense()

	Converts to another type of matrix.

	
todia()

	Converts to another type of matrix.

	
todok()

	Converts to another type of matrix.

	
class gpkit.small_classes.Count

	Bases: object

Like python 2’s itertools.count, for Python 3 compatibility.

	
next()

	Increment self.count and return it

	
class gpkit.small_classes.DictOfLists

	Bases: dict

A hierarchy of dicionaries, with lists at the bottom.

	
append(sol)

	Appends a dict (of dicts) of lists to all held lists.

	
atindex(i)

	Indexes into each list independently.

	
classify(cls)

	Converts dictionaries whose first key isn’t a string to given class.

	
to_arrays()

	Converts all lists into array.

	
class gpkit.small_classes.HashVector

	Bases: dict

A simple, sparse, string-indexed vector. Inherits from dict.

The HashVector class supports element-wise arithmetic:
any undeclared variables are assumed to have a value of zero.

arg : iterable

>>> x = gpkit.nomials.Monomial('x')
>>> exp = gpkit.small_classes.HashVector({x: 2})

	
copy()

	Return a copy of this

	
class gpkit.small_classes.SolverLog(verbosity=0, output=None, **kwargs)

	Bases: list

Adds a write method to list so it’s file-like and can replace stdout.

	
write(writ)

	Append and potentially write the new line.

	
gpkit.small_classes.matrix_converter(name)

	Generates conversion function.

gpkit.small_scripts module

Assorted helper methods

	
gpkit.small_scripts.is_sweepvar(sub)

	Determines if a given substitution indicates a sweep.

	
gpkit.small_scripts.latex_num(c)

	Returns latex string of numbers, potentially using exponential notation.

	
gpkit.small_scripts.mag(c)

	Return magnitude of a Number or Quantity

	
gpkit.small_scripts.nomial_latex_helper(c, pos_vars, neg_vars)

	Combines (varlatex, exponent) tuples,
separated by positive vs negative exponent,
into a single latex string

	
gpkit.small_scripts.try_str_without(item, excluded)

	Try to call item.str_without(excluded); fall back to str(item)

	
gpkit.small_scripts.veckeyed(key)

	Return a veckey version of a VarKey

gpkit.solution_array module

Defines SolutionArray class

	
class gpkit.solution_array.SolutionArray

	Bases: gpkit.small_classes.DictOfLists

A dictionary (of dictionaries) of lists, with convenience methods.

cost : array
variables: dict of arrays
sensitivities: dict containing:

monomials : array
posynomials : array
variables: dict of arrays

	localmodelsNomialArray

	Local power-law fits (small sensitivities are cut off)

>>> import gpkit
>>> import numpy as np
>>> x = gpkit.Variable("x")
>>> x_min = gpkit.Variable("x_{min}", 2)
>>> sol = gpkit.Model(x, [x >= x_min]).solve(verbosity=0)
>>>
>>> # VALUES
>>> values = [sol(x), sol.subinto(x), sol["variables"]["x"]]
>>> assert all(np.array(values) == 2)
>>>
>>> # SENSITIVITIES
>>> senss = [sol.sens(x_min), sol.sens(x_min)]
>>> senss.append(sol["sensitivities"]["variables"]["x_{min}"])
>>> assert all(np.array(senss) == 1)

	
plot(posys=None, axes=None)

	Plots a sweep for each posy

	
program = None

	

	
subinto(posy)

	Returns NomialArray of each solution substituted into posy.

	
summary(showvars=(), ntopsenss=5)

	Print summary table, showing top sensitivities and no constants

	
table(showvars=(), tables=('cost', 'sweepvariables', 'freevariables', 'constants', 'sensitivities'), **kwargs)

	A table representation of this SolutionArray

	tables: Iterable

	
	Which to print of (“cost”, “sweepvariables”, “freevariables”,

	“constants”, “sensitivities”)

fixedcols: If true, print vectors in fixed-width format
latex: int

If > 0, return latex format (options 1-3); otherwise plain text

	included_models: Iterable of strings

	If specified, the models (by name) to include

	excluded_models: Iterable of strings

	If specified, model names to exclude

str

	
table_titles = {'constants': 'Constants', 'freevariables': 'Free Variables', 'sweepvariables': 'Sweep Variables', 'variables': 'Variables'}

	

	
gpkit.solution_array.insenss_table(data, _, maxval=0.1, **kwargs)

	Returns insensitivity table lines

	
gpkit.solution_array.results_table(data, title, minval=0, printunits=True, fixedcols=True, varfmt='%s : ', valfmt='%-.4g ', vecfmt='%-8.3g', included_models=None, excluded_models=None, latex=False, sortbyvals=False, **_)

	Pretty string representation of a dict of VarKeys
Iterable values are handled specially (partial printing)

	data: dict whose keys are VarKey’s

	data to represent in table

title: string
minval: float

skip values with all(abs(value)) < minval

printunits: bool
fixedcols: bool

if True, print rhs (val, units, label) in fixed-width cols

	varfmt: string

	format for variable names

	valfmt: string

	format for scalar values

	vecfmt: string

	format for vector values

	latex: int

	If > 0, return latex format (options 1-3); otherwise plain text

	included_models: Iterable of strings

	If specified, the models (by name) to include

	excluded_models: Iterable of strings

	If specified, model names to exclude

	sortbyvalsboolean

	If true, rows are sorted by their average value instead of by name.

	
gpkit.solution_array.senss_table(data, showvars=(), title='Sensitivities', **kwargs)

	Returns sensitivity table lines

	
gpkit.solution_array.topsenss_filter(data, showvars, nvars=5)

	Filters sensitivities down to top N vars

	
gpkit.solution_array.topsenss_table(data, showvars, nvars=5, **kwargs)

	Returns top sensitivity table lines

gpkit.varkey module

Defines the VarKey class

	
class gpkit.varkey.VarKey(name=None, **kwargs)

	Bases: object

An object to correspond to each ‘variable name’.

	namestr, VarKey, or Monomial

	Name of this Variable, or object to derive this Variable from.

	**kwargs :

	Any additional attributes, which become the descr attribute (a dict).

VarKey with the given name and descr.

	
latex(excluded=None)

	Returns latex representation.

	
latex_unitstr()

	Returns latex unitstr

	
naming

	Returns this varkey’s naming tuple

	
classmethod new_unnamed_id()

	Increment self.count and return it

	
str_without(excluded=None)

	Returns string without certain fields (such as ‘models’).

	
subscripts = ('models', 'idx')

	

	
unitstr(into='%s', options='~', dimless='')

	Returns the string corresponding to an object’s units.

Module contents

GP and SP modeling package

gpkit.constraints package

Submodules

gpkit.constraints.array module

Implements ArrayConstraint

	
class gpkit.constraints.array.ArrayConstraint(constraints, left, oper, right)

	Bases: gpkit.constraints.single_equation.SingleEquationConstraint, gpkit.constraints.set.ConstraintSet

A ConstraintSet for prettier array-constraint printing.

ArrayConstraint gets its sub method from ConstrainSet,
and so left and right are only used for printing.

When created by NomialArray left and right are likely to be
be either NomialArrays or Varkeys of VectorVariables.

	
subinplace(subs)

	Substitutes in place, updating self.substitutions accordingly.

Keys substituted with subinplace are no longer present, so if such a
key is also in self.substitutions that substitution is now orphaned. If
subs[key] describes some key in the ConstraintSet (i.e. one key has
been substituted for another), then a substitution is added, mapping
the orphaned value to this new key; otherwise, an error is raised.

gpkit.constraints.bounded module

Implements Bounded

	
class gpkit.constraints.bounded.Bounded(constraints, verbosity=1, eps=1e-30, lower=None, upper=None)

	Bases: gpkit.constraints.set.ConstraintSet

Bounds contained variables so as to ensure dual feasibility.

	constraintsiterable

	constraints whose varkeys will be bounded

	substitutionsdict

	as in ConstraintSet.__init__

	verbosityint

	
	how detailed of a warning to print

	0: nothing
1: print warnings

	epsfloat

	default lower bound is eps, upper bound is 1/eps

	lowerfloat

	lower bound for all varkeys, replaces eps

	upperfloat

	upper bound for all varkeys, replaces 1/eps

	
check_boundaries(result)

	Creates (and potentially prints) a dictionary of unbounded variables.

	
process_result(result)

	Add boundedness to the model’s solution

	
sens_from_dual(las, nus, result)

	Return sensitivities while capturing the relevant lambdas

	
gpkit.constraints.bounded.varkey_bounds(varkeys, lower, upper)

	Returns constraints list bounding all varkeys.

	varkeysiterable

	list of varkeys to create bounds for

	lowerfloat

	lower bound for all varkeys

	upperfloat

	upper bound for all varkeys

gpkit.constraints.costed module

Implement CostedConstraintSet

	
class gpkit.constraints.costed.CostedConstraintSet(cost, constraints, substitutions=None)

	Bases: gpkit.constraints.set.ConstraintSet

A ConstraintSet with a cost

cost : gpkit.Posynomial
constraints : Iterable
substitutions : dict

	
controlpanel(*args, **kwargs)

	Easy model control in IPython / Jupyter

Like interact(), but with the ability to control sliders and their
ranges live. args and kwargs are passed on to interact()

	
interact(ranges=None, fn_of_sol=None, **solvekwargs)

	Easy model interaction in IPython / Jupyter

By default, this creates a model with sliders for every constant
which prints a new solution table whenever the sliders are changed.

	fn_of_solfunction

	The function called with the solution after each solve that
displays the result. By default prints a table.

	rangesdictionary {str: Slider object or tuple}

	Determines which sliders get created. Tuple values may contain
two or three floats: two correspond to (min, max), while three
correspond to (min, step, max)

	**solvekwargs

	kwargs which get passed to the solve()/localsolve() method.

	
reset_varkeys()

	Resets varkeys to what is in the cost and constraints

	
rootconstr_latex(excluded=None)

	Latex showing cost, to be used when this is the top constraint

	
rootconstr_str(excluded=None)

	String showing cost, to be used when this is the top constraint

	
subinplace(subs)

	Substitutes in place.

gpkit.constraints.gp module

Implement the GeometricProgram class

	
class gpkit.constraints.gp.GeometricProgram(cost, constraints, substitutions, allow_missingbounds=False)

	Bases: gpkit.constraints.costed.CostedConstraintSet, gpkit.nomials.data.NomialData

Standard mathematical representation of a GP.

	costConstraint

	Posynomial to minimize when solving

	constraintslist of Posynomials

	Constraints to maintain when solving (implicitly Posynomials <= 1)
GeometricProgram does not accept equality constraints (e.g. x == 1);

instead use two inequality constraints (e.g. x <= 1, 1/x <= 1)

	verbosityint (optional)

	If verbosity is greater than zero, warns about missing bounds
on creation.

solver_out and solver_log are set during a solve
result is set at the end of a solve if solution status is optimal

>>> gp = gpkit.geometric_program.GeometricProgram(
 # minimize
 x,
 [# subject to
 1/x # <= 1, implicitly
])
>>> gp.solve()

	
check_solution(cost, primal, nu, la, tol=0.001, abstol=1e-20)

	Run a series of checks to mathematically confirm sol solves this GP

	cost: float

	cost returned by solver

	primal: list

	primal solution returned by solver

	nu: numpy.ndarray

	monomial lagrange multiplier

	la: numpy.ndarray

	posynomial lagrange multiplier

RuntimeWarning, if any problems are found

	
gen()

	Generates nomial and solve data (A, p_idxs) from posynomials

	
solve(solver=None, verbosity=1, warn_on_check=False, process_result=True, **kwargs)

	Solves a GeometricProgram and returns the solution.

	solverstr or function (optional)

	By default uses one of the solvers found during installation.
If set to “mosek”, “mosek_cli”, or “cvxopt”, uses that solver.
If set to a function, passes that function cs, A, p_idxs, and k.

	verbosityint (optional)

	If greater than 0, prints solver name and solve time.

	**kwargs :

	Passed to solver constructor and solver function.

	resultdict

	A dictionary containing the translated solver result; keys below.

	costfloat

	The value of the objective at the solution.

	variablesdict

	The value of each variable at the solution.

	sensitivitiesdict

	
	monomialsarray of floats

	Each monomial’s dual variable value at the solution.

	posynomialsarray of floats

	Each posynomials’s dual variable value at the solution.

	
gpkit.constraints.gp.check_mono_eq_bounds(missingbounds, meq_bounds)

	Bounds variables with monomial equalities

	
gpkit.constraints.gp.genA(exps, varlocs, meq_idxs)

	Generates A matrix from exps and varidxs

	expslist of Hashvectors

	Exponents for each monomial in a GP

	varidxsdict

	Locations of each variable in exps

	Asparse Cootmatrix

	Exponents of the various free variables for each monomial: rows
of A are monomials, columns of A are variables.

	missingboundsdict

	Keys: variables that lack bounds. Values: which bounds are missed.

gpkit.constraints.model module

Implements Model

	
class gpkit.constraints.model.Model(cost=None, constraints=None, *args, **kwargs)

	Bases: gpkit.constraints.costed.CostedConstraintSet

Symbolic representation of an optimization problem.

The Model class is used both directly to create models with constants and
sweeps, and indirectly inherited to create custom model classes.

	costPosynomial (optional)

	Defaults to Monomial(1).

	constraintsConstraintSet or list of constraints (optional)

	Defaults to an empty list.

	substitutionsdict (optional)

	This dictionary will be substituted into the problem before solving,
and also allows the declaration of sweeps and linked sweeps.

	namestr (optional)

	Allows “naming” a model in a way similar to inherited instances,
and overrides the inherited name if there is one.

program is set during a solve
solution is set at the end of a solve

	
as_gpconstr(x0, substitutions=None)

	Returns approximating constraint, keeping name and num

	
autosweep(sweeps, tol=0.01, samplepoints=100, **solveargs)

	Autosweeps {var: (start, end)} pairs in sweeps to tol.

Returns swept and sampled solutions.
The original simplex tree can be accessed at sol.bst

	
debug(solver=None, verbosity=1, **solveargs)

	Attempts to diagnose infeasible models.

If a model debugs but errors in a process_result call, debug again
with process_results=False

	
gp(constants=None, **kwargs)

	Return program version of self

	program: NomialData

	Class to return, e.g. GeometricProgram or SequentialGeometricProgram

	return_attr: string

	attribute to return in addition to the program

	
localsolve(solver=None, verbosity=1, skipsweepfailures=False, **kwargs)

	Forms a mathematical program and attempts to solve it.

	solverstring or function (optional)

	If None, uses the default solver found in installation.

	verbosityint (optional)

	If greater than 0 prints runtime messages.
Is decremented by one and then passed to programs.

	skipsweepfailuresbool (optional)

	If True, when a solve errors during a sweep, skip it.

**kwargs : Passed to solver

	solSolutionArray

	See the SolutionArray documentation for details.

ValueError if the program is invalid.
RuntimeWarning if an error occurs in solving or parsing the solution.

	
name = None

	

	
naming = None

	

	
num = None

	

	
program = None

	

	
solution = None

	

	
solve(solver=None, verbosity=1, skipsweepfailures=False, **kwargs)

	Forms a mathematical program and attempts to solve it.

	solverstring or function (optional)

	If None, uses the default solver found in installation.

	verbosityint (optional)

	If greater than 0 prints runtime messages.
Is decremented by one and then passed to programs.

	skipsweepfailuresbool (optional)

	If True, when a solve errors during a sweep, skip it.

**kwargs : Passed to solver

	solSolutionArray

	See the SolutionArray documentation for details.

ValueError if the program is invalid.
RuntimeWarning if an error occurs in solving or parsing the solution.

	
sp(constants=None, **kwargs)

	Return program version of self

	program: NomialData

	Class to return, e.g. GeometricProgram or SequentialGeometricProgram

	return_attr: string

	attribute to return in addition to the program

	
subconstr_latex(excluded=None)

	The collapsed appearance of a ConstraintBase

	
subconstr_str(excluded=None)

	The collapsed appearance of a ConstraintBase

	
sweep(sweeps, **solveargs)

	Sweeps {var: values} pairs in sweeps. Returns swept solutions.

	
verify_docstring()

	Verifies docstring bounds are sufficient but not excessive.

	
zero_lower_unbounded_variables()

	Recursively substitutes 0 for variables that lack a lower bound

	
gpkit.constraints.model.get_relaxed(relaxvals, mapped_list, min_return=1)

	Determines which relaxvars are considered ‘relaxed’

gpkit.constraints.prog_factories module

Scripts for generating, solving and sweeping programs

	
gpkit.constraints.prog_factories.run_sweep(genfunction, self, solution, skipsweepfailures, constants, sweep, linked, solver, verbosity, **kwargs)

	Runs through a sweep.

gpkit.constraints.relax module

Models for assessing primal feasibility

	
class gpkit.constraints.relax.ConstantsRelaxed(constraints, include_only=None, exclude=None)

	Bases: gpkit.constraints.set.ConstraintSet

Relax constants in a constraintset.

	constraintsiterable

	Constraints which will be relaxed (made easier).

	include_onlyset

	if declared, variable names must be on this list to be relaxed

	excludeset

	if declared, variable names on this list will never be relaxed

	relaxvarsVariable

	The variables controlling the relaxation. A solved value of 1 means no
relaxation was necessary or optimal for a particular constant.
Higher values indicate the amount by which that constant has been
made easier: e.g., a value of 1.5 means it was made 50 percent easier
in the final solution than in the original problem. Of course, this
can also be determined by looking at the constant’s new value directly.

	
process_result(result)

	Does arbitrary computation / manipulation of a program’s result

There’s no guarantee what order different constraints will process
results in, so any changes made to the program’s result should be
careful not to step on other constraint’s toes.

	check that an inequality was tight

	add values computed from solved variables

	
class gpkit.constraints.relax.ConstraintsRelaxed(constraints)

	Bases: gpkit.constraints.set.ConstraintSet

Relax constraints, as in Eqn. 11 of [Boyd2007].

	constraintsiterable

	Constraints which will be relaxed (made easier).

	relaxvarsVariable

	The variables controlling the relaxation. A solved value of 1 means no
relaxation was necessary or optimal for a particular constraint.
Higher values indicate the amount by which that constraint has been
made easier: e.g., a value of 1.5 means it was made 50 percent easier
in the final solution than in the original problem.

[Boyd2007] : “A tutorial on geometric programming”, Optim Eng 8:67-122

	
class gpkit.constraints.relax.ConstraintsRelaxedEqually(constraints)

	Bases: gpkit.constraints.set.ConstraintSet

Relax constraints the same amount, as in Eqn. 10 of [Boyd2007].

	constraintsiterable

	Constraints which will be relaxed (made easier).

	relaxvarVariable

	The variable controlling the relaxation. A solved value of 1 means no
relaxation. Higher values indicate the amount by which all constraints
have been made easier: e.g., a value of 1.5 means all constraints were
50 percent easier in the final solution than in the original problem.

[Boyd2007] : “A tutorial on geometric programming”, Optim Eng 8:67-122

gpkit.constraints.set module

Implements ConstraintSet

	
class gpkit.constraints.set.ConstraintSet(constraints, substitutions=None)

	Bases: list

Recursive container for ConstraintSets and Inequalities

	
append(value)

	L.append(object) – append object to end

	
as_gpconstr(x0, substitutions=None)

	Returns GPConstraint approximating this constraint at x0

When x0 is none, may return a default guess.

	
as_posyslt1(substitutions=None)

	Returns list of posynomials which must be kept <= 1

	
flat(constraintsets=True)

	Yields contained constraints, optionally including constraintsets.

	
latex(excluded=None)

	LaTeX representation of a ConstraintSet.

	
process_result(result)

	Does arbitrary computation / manipulation of a program’s result

There’s no guarantee what order different constraints will process
results in, so any changes made to the program’s result should be
careful not to step on other constraint’s toes.

	check that an inequality was tight

	add values computed from solved variables

	
reset_varkeys()

	Goes through constraints and collects their varkeys.

	
rootconstr_latex(excluded=None)

	The appearance of a ConstraintSet in addition to its contents

	
rootconstr_str(excluded=None)

	The appearance of a ConstraintSet in addition to its contents

	
sens_from_dual(las, nus, result)

	Computes constraint and variable sensitivities from dual solution

	laslist

	Sensitivity of each posynomial returned by self.as_posyslt1

	nus: list of lists

	Each posynomial’s monomial sensitivities

	constraint_sensdict

	The interesting and computable sensitivities of this constraint

	var_senssdict

	The variable sensitivities of this constraint

	
str_without(excluded=None)

	String representation of a ConstraintSet.

	
subconstr_latex(excluded=None)

	The collapsed appearance of a ConstraintSet

	
subconstr_str(excluded=None)

	The collapsed appearance of a ConstraintSet

	
subinplace(subs)

	Substitutes in place, updating self.substitutions accordingly.

Keys substituted with subinplace are no longer present, so if such a
key is also in self.substitutions that substitution is now orphaned. If
subs[key] describes some key in the ConstraintSet (i.e. one key has
been substituted for another), then a substitution is added, mapping
the orphaned value to this new key; otherwise, an error is raised.

	
topvar(key)

	If a variable by a given name exists in the top model, return it

	
unique_varkeys = frozenset([])

	

	
variables_byname(key)

	Get all variables with a given name

	
varkeys = None

	

	
gpkit.constraints.set.add_meq_bounds(bounded, meq_bounded)

	Iterates through meq_bounds until convergence

	
gpkit.constraints.set.raise_badelement(cns, i, constraint)

	Identify the bad element and raise a ValueError

	
gpkit.constraints.set.raise_elementhasnumpybools(constraint)

	Identify the bad subconstraint array and raise a ValueError

gpkit.constraints.sgp module

Implement the SequentialGeometricProgram class

	
class gpkit.constraints.sgp.SequentialGeometricProgram(cost, constraints, substitutions)

	Bases: gpkit.constraints.costed.CostedConstraintSet

Prepares a collection of signomials for a SP solve.

	costPosynomial

	Objective to minimize when solving

	constraintslist of Constraint or SignomialConstraint objects

	Constraints to maintain when solving (implicitly Signomials <= 1)

	verbosityint (optional)

	Currently has no effect: SequentialGeometricPrograms don’t know
anything new after being created, unlike GeometricPrograms.

gps is set during a solve
result is set at the end of a solve

>>> gp = gpkit.geometric_program.SequentialGeometricProgram(
 # minimize
 x,
 [# subject to
 1/x - y/x, # <= 1, implicitly
 y/10 # <= 1
])
>>> gp.solve()

	
gp(x0=None, mutategp=False)

	The GP approximation of this SP at x0.

	
init_gp(substitutions, x0=None)

	Generates a simplified GP representation for later modification

	
localsolve(solver=None, verbosity=1, x0=None, reltol=0.0001, iteration_limit=50, mutategp=True, **kwargs)

	Locally solves a SequentialGeometricProgram and returns the solution.

	solverstr or function (optional)

	By default uses one of the solvers found during installation.
If set to “mosek”, “mosek_cli”, or “cvxopt”, uses that solver.
If set to a function, passes that function cs, A, p_idxs, and k.

	verbosityint (optional)

	If greater than 0, prints solve time and number of iterations.
Each GP is created and solved with verbosity one less than this, so
if greater than 1, prints solver name and time for each GP.

	x0dict (optional)

	Initial location to approximate signomials about.

	reltolfloat

	Iteration ends when this is greater than the distance between two
consecutive solve’s objective values.

	iteration_limitint

	Maximum GP iterations allowed.

	*args, **kwargs :

	Passed to solver function.

	resultdict

	A dictionary containing the translated solver result.

gpkit.constraints.sigeq module

Implements SignomialEquality

	
class gpkit.constraints.sigeq.SignomialEquality(left, right)

	Bases: gpkit.constraints.set.ConstraintSet

A constraint of the general form posynomial == posynomial

gpkit.constraints.single_equation module

Implements SingleEquationConstraint

	
class gpkit.constraints.single_equation.SingleEquationConstraint(left, oper, right)

	Bases: object

Constraint expressible in a single equation.

	
func_opers = {'<=': <built-in function le>, '=': <built-in function eq>, '>=': <built-in function ge>}

	

	
latex(excluded=None)

	Latex representation without attributes in excluded list

	
latex_opers = {'<=': '\\leq', '=': '=', '>=': '\\geq'}

	

	
process_result(result)

	Process solver results

	
str_without(excluded=None)

	String representation without attributes in excluded list

	
sub(subs)

	Returns a substituted version of this constraint.

	
subconstr_latex(excluded)

	The collapsed latex of a constraint

	
subconstr_str(excluded)

	The collapsed string of a constraint

	
gpkit.constraints.single_equation.trycall(obj, attr, arg, default)

	Try to call method of an object, returning default if it does not exist

gpkit.constraints.tight module

Implements Tight

	
class gpkit.constraints.tight.Tight(constraints, substitutions=None, reltol=None, raiseerror=False)

	Bases: gpkit.constraints.set.ConstraintSet

ConstraintSet whose inequalities must result in an equality.

	
process_result(result)

	Checks that all constraints are satisfied with equality

	
reltol = 1e-06

	

Module contents

Contains ConstraintSet and related classes and objects

gpkit.interactive package

Submodules

gpkit.interactive.chartjs module

gpkit.interactive.plot_sweep module

Implements plot_sweep1d function

	
gpkit.interactive.plot_sweep.assign_axes(var, posys, axes)

	Assigns axes to posys, creating and formatting if necessary

	
gpkit.interactive.plot_sweep.format_and_label_axes(var, posys, axes, ylabel=True)

	Formats and labels axes

	
gpkit.interactive.plot_sweep.plot_1dsweepgrid(model, sweeps, posys, origsol=None, tol=0.01, **solveargs)

	Creates and plots a sweep from an existing model

Example usage:
f, _ = plot_sweep_1d(m, {‘x’: np.linspace(1, 2, 5)}, ‘y’)
f.savefig(‘mysweep.png’)

gpkit.interactive.plotting module

Plotting methods

	
gpkit.interactive.plotting.compare(models, sweeps, posys, tol=0.001)

	Compares the values of posys over a sweep of several models.

If posys is of the same length as models, this will plot different
variables from different models.

Currently only supports a single sweepvar.

Example Usage:
compare([aec, fbc], {“R”: (160, 300)},

[“cost”, (“W_{rm batt}”, “W_{rm fuel}”)], tol=0.001)

	
gpkit.interactive.plotting.plot_convergence(model)

	Plots the convergence of a signomial programming model

	model: Model

	Signomial programming model that has already been solved

	matplotlib.pyplot Figure

	Plot of cost as functions of SP iteration #

gpkit.interactive.ractor module

Implements Ractor-based interactive CADtoons

	
gpkit.interactive.ractor.ractorjs(title, model, update_py, ranges, constraint_js='')

	Creates Javascript/HTML for CADtoon interaction without installing GPkit.

	
gpkit.interactive.ractor.ractorpy(model, update_py, ranges, constraint_js='', showtables=('cost', 'sensitivities'))

	Creates interactive iPython widget for controlling a CADtoon

	
gpkit.interactive.ractor.showcadtoon(title, css='')

	Displays cadtoon as iPython HTML

gpkit.interactive.sankey module

gpkit.interactive.widgets module

Module contents

Module for the interactive and plotting functions of GPkit

gpkit.nomials package

Submodules

gpkit.nomials.array module

Module for creating NomialArray instances.

Example

>>> x = gpkit.Monomial('x')
>>> px = gpkit.NomialArray([1, x, x**2])

	
class gpkit.nomials.array.NomialArray

	Bases: numpy.ndarray

A Numpy array with elementwise inequalities and substitutions.

input_array : array-like

>>> px = gpkit.NomialArray([1, x, x**2])

	
latex(matwrap=True)

	Returns 1D latex list of contents.

	
left

	Returns (0, self[0], self[1] … self[N-1])

	
outer(other)

	Returns the array and argument’s outer product.

	
padleft(padding)

	Returns ({padding}, self[0], self[1] … self[N])

	
padright(padding)

	Returns (self[0], self[1] … self[N], {padding})

	
prod(*args, **kwargs)

	Returns a product. O(N) if no arguments and only contains monomials.

	
right

	Returns (self[1], self[2] … self[N], 0)

	
str_without(excluded=None)

	Returns string without certain fields (such as ‘models’).

	
sub(subs, require_positive=True)

	Substitutes into the array

	
sum(*args, **kwargs)

	Returns a sum. O(N) if no arguments are given.

	
units

	units must have same dimensions across the entire nomial array

	
vectorize(function, *args, **kwargs)

	Apply a function to each terminal constraint, returning the array

	
gpkit.nomials.array.array_constraint(symbol, func)

	Return function which creates constraints of the given operator.

gpkit.nomials.core module

The shared non-mathematical backbone of all Nomials

	
class gpkit.nomials.core.Nomial(hmap)

	Bases: gpkit.nomials.data.NomialData

Shared non-mathematical properties of all nomials

	
latex(excluded=None)

	Latex representation, parsing excluded just as .str_without does

	
prod()

	Return self for compatibility with NomialArray

	
str_without(excluded=None)

	String representation, excluding fields (‘units’, varkey attributes)

	
sub = None

	

	
sum()

	Return self for compatibility with NomialArray

	
to(units)

	Create new Signomial converted to new units

	
unitstr(into='%s', options='~', dimless='')

	Returns the string corresponding to an object’s units.

	
value

	Self, with values substituted for variables that have values

float, if no symbolic variables remain after substitution
(Monomial, Posynomial, or Nomial), otherwise.

gpkit.nomials.data module

Machinery for exps, cs, varlocs data – common to nomials and programs

	
class gpkit.nomials.data.NomialData(hmap)

	Bases: object

Object for holding cs, exps, and other basic ‘nomial’ properties.

cs: array (coefficient of each monomial term)
exps: tuple of {VarKey: float} (exponents of each monomial term)
varlocs: {VarKey: list} (terms each variable appears in)
units: pint.UnitsContainer

	
cs

	Create cs or return cached cs

	
diff(var)

	Derivative of this with respect to a Variable

	var (Variable):

	Variable to take derivative with respect to

NomialData

	
exps

	Create exps or return cached exps

	
values

	The NomialData’s values, created when necessary.

	
varkeys

	The NomialData’s varkeys, created when necessary for a substitution.

	
varlocs

	Create varlocs or return cached varlocs

gpkit.nomials.map module

Implements the NomialMap class

	
class gpkit.nomials.map.NomialMap

	Bases: gpkit.small_classes.HashVector

Class for efficent algebraic represention of a nomial

A NomialMap is a mapping between hashvectors representing exponents
and their coefficients in a posynomial.

For example, {{x : 1}: 2.0, {y: 1}: 3.0} represents 2*x + 3*y, where
x and y are VarKey objects.

	
csmap = None

	

	
diff(varkey)

	Differentiates a NomialMap with respect to a varkey

	
expmap = None

	

	
mmap(orig)

	Maps substituted monomials back to the original nomial

	self.expmap is the map from pre- to post-substitution exponents, and

	takes the form {original_exp: new_exp}

self.csmap is the map from pre-substitution exponents to coefficients.

m_from_ms is of the form {new_exp: [old_exps,]}

	pmap is of the form [{orig_idx1: fraction1, orig_idx2: fraction2, },]

	where at the index corresponding to each new_exp is a dictionary
mapping the indices corresponding to the old exps to their
fraction of the post-substitution coefficient

	
remove_zeros()

	Removes zeroed exponents and monomials.

If only_check_cs is True, checks only whether any values are zero.
If False also checks whether any exponents in the keys are zero.

	
sub(substitutions, varkeys, parsedsubs=False)

	Applies substitutions to a NomialMap

	substitutions(dict-like)

	list of substitutions to perform

	varkeys(set-like)

	varkeys that are present in self
(required argument so as to require efficient code)

	parsedsubsbool

	flag if the substitutions have already been parsed
to contain only keys in varkeys

	
to(units)

	Returns a new NomialMap of the given units

	
units = None

	

	
units_of_product(thing, thing2=None)

	Sets units to those of thing*thing2

	
gpkit.nomials.map.subinplace(cp, exp, o_exp, vk, cval, expval, exps_covered)

	Modifies cp by substituing cval/expval for vk in exp

gpkit.nomials.math module

Signomial, Posynomial, Monomial, Constraint, & MonoEQCOnstraint classes

	
class gpkit.nomials.math.Monomial(hmap=None, cs=1, require_positive=True, **descr)

	Bases: gpkit.nomials.math.Posynomial

A Posynomial with only one term

Same as Signomial.
Note: Monomial historically supported several different init formats

These will be deprecated in the future, replaced with a single
__init__ syntax, same as Signomial.

	
c

	Creates c or returns a cached c

	
exp

	Creates exp or returns a cached exp

	
mono_approximation(x0)

	Monomial approximation about a point x0

	x0 (dict):

	point to monomialize about

Monomial (unless self(x0) < 0, in which case a Signomial is returned)

	
class gpkit.nomials.math.MonomialEquality(left, oper, right)

	Bases: gpkit.nomials.math.PosynomialInequality

A Constraint of the form Monomial == Monomial.

	
as_posyslt1(substitutions=None)

	Tags posynomials for dual feasibility checking

	
sens_from_dual(la, nu, result)

	Returns the variable/constraint sensitivities from lambda/nu

	
class gpkit.nomials.math.Posynomial(hmap=None, cs=1, require_positive=True, **descr)

	Bases: gpkit.nomials.math.Signomial

A Signomial with strictly positive cs

Same as Signomial.
Note: Posynomial historically supported several different init formats

These will be deprecated in the future, replaced with a single
__init__ syntax, same as Signomial.

	
mono_lower_bound(x0)

	Monomial lower bound at a point x0

	x0 (dict):

	point to make lower bound exact

Monomial

	
class gpkit.nomials.math.PosynomialInequality(left, oper, right)

	Bases: gpkit.nomials.math.ScalarSingleEquationConstraint

A constraint of the general form monomial >= posynomial
Stored in the posylt1_rep attribute as a single Posynomial (self <= 1)
Usually initialized via operator overloading, e.g. cc = (y**2 >= 1 + x)

	
as_gpconstr(x0, substitutions)

	The GP version of a Posynomial constraint is itself

	
as_posyslt1(substitutions=None)

	Returns the posys <= 1 representation of this constraint.

	
sens_from_dual(la, nu, result)

	Returns the variable/constraint sensitivities from lambda/nu

	
class gpkit.nomials.math.ScalarSingleEquationConstraint(left, oper, right)

	Bases: gpkit.constraints.single_equation.SingleEquationConstraint

A SingleEquationConstraint with scalar left and right sides.

	
nomials = []

	

	
subinplace(substitutions)

	Modifies the constraint in place with substitutions.

	
class gpkit.nomials.math.Signomial(hmap=None, cs=1, require_positive=True, **descr)

	Bases: gpkit.nomials.core.Nomial

A representation of a Signomial.

	exps: tuple of dicts

	Exponent dicts for each monomial term

	cs: tuple

	Coefficient values for each monomial term

	require_positive: bool

	If True and Signomials not enabled, c <= 0 will raise ValueError

Signomial
Posynomial (if the input has only positive cs)
Monomial (if the input has one term and only positive cs)

	
diff(var)

	Derivative of this with respect to a Variable

var (Variable):
Variable to take derivative with respect to

Signomial (or Posynomial or Monomial)

	
mono_approximation(x0)

	Monomial approximation about a point x0

	x0 (dict):

	point to monomialize about

Monomial (unless self(x0) < 0, in which case a Signomial is returned)

	
posy_negy()

	Get the positive and negative parts, both as Posynomials

	Posynomial, Posynomial:

	p_pos and p_neg in (self = p_pos - p_neg) decomposition,

	
sub(substitutions, require_positive=True)

	Returns a nomial with substitued values.

3 == (x**2 + y).sub({‘x’: 1, y: 2})
3 == (x).gp.sub(x, 3)

	substitutionsdict or key

	Either a dictionary whose keys are strings, Variables, or VarKeys,
and whose values are numbers, or a string, Variable or Varkey.

	valnumber (optional)

	If the substitutions entry is a single key, val holds the value

	require_positiveboolean (optional, default is True)

	Controls whether the returned value can be a Signomial.

Returns substituted nomial.

	
subinplace(substitutions)

	Substitutes in place.

	
class gpkit.nomials.math.SignomialInequality(left, oper, right)

	Bases: gpkit.nomials.math.ScalarSingleEquationConstraint

A constraint of the general form posynomial >= posynomial
Stored internally (exps, cs) as a single Signomial (0 >= self)
Usually initialized via operator overloading, e.g. cc = (y**2 >= 1 + x - y)
Additionally retains input format (lhs vs rhs) in self.left and self.right
Form is self.left >= self.right.

	
as_approxsgt(x0)

	Returns monomial-greater-than sides, to be called after as_approxlt1

	
as_approxslt()

	Returns posynomial-less-than sides of a signomial constraint

	
as_gpconstr(x0, substitutions=None)

	Returns GP approximation of an SP constraint at x0

	
as_posyslt1(substitutions=None)

	Returns the posys <= 1 representation of this constraint.

	
class gpkit.nomials.math.SingleSignomialEquality(left, right)

	Bases: gpkit.nomials.math.SignomialInequality

A constraint of the general form posynomial == posynomial

	
as_approxsgt(x0)

	Returns monomial-greater-than sides, to be called after as_approxlt1

	
as_approxslt()

	Returns posynomial-less-than sides of a signomial constraint

	
as_gpconstr(x0, substitutions=None)

	Returns GP approximation of an SP constraint at x0

	
as_posyslt1(substitutions=None)

	Returns the posys <= 1 representation of this constraint.

gpkit.nomials.substitution module

Scripts to parse and collate substitutions

	
gpkit.nomials.substitution.append_sub(sub, keys, constants, sweep, linkedsweep)

	Appends sub to constants, sweep, or linkedsweep.

	
gpkit.nomials.substitution.parse_subs(varkeys, substitutions, clean=False)

	Seperates subs into constants, sweeps linkedsweeps actually present.

gpkit.nomials.variables module

Implement Variable and ArrayVariable classes

	
class gpkit.nomials.variables.ArrayVariable

	Bases: gpkit.nomials.array.NomialArray

A described vector of singlet Monomials.

	shapeint or tuple

	length or shape of resulting array

	*args :

	
	may contain “name” (Strings)

	
“value” (Iterable)
“units” (Strings + Quantity)

and/or “label” (Strings)

	**descr :

	VarKey description

NomialArray of Monomials, each containing a VarKey with name ‘$name_{i}’,
where $name is the vector’s name and i is the VarKey’s index.

	
class gpkit.nomials.variables.Variable(*args, **descr)

	Bases: gpkit.nomials.math.Monomial

A described singlet Monomial.

	*argslist

	
	may contain “name” (Strings)

	
“value” (Numbers + Quantity) or (Iterable) for a sweep
“units” (Strings + Quantity)

and/or “label” (Strings)

	**descrdict

	VarKey description

Monomials containing a VarKey with the name ‘$name’,
where $name is the vector’s name and i is the VarKey’s index.

	
sub(*args, **kwargs)

	Same as nomial substitution, but also allows single-argument calls

x = Variable(‘x’)
assert x.sub(3) == Variable(‘x’, value=3)

	
to(units)

	Create new Signomial converted to new units

	
class gpkit.nomials.variables.VectorizableVariable(*args, **descr)

	Bases: gpkit.nomials.variables.Variable, gpkit.nomials.variables.ArrayVariable

A Variable outside a vectorized environment, an ArrayVariable within.

	
gpkit.nomials.variables.veclinkedfn(linkedfn, i)

	Generate an indexed linking function.

Module contents

Contains nomials, inequalities, and arrays

gpkit.tools package

Submodules

gpkit.tools.autosweep module

Tools for optimal fits to GP sweeps

	
class gpkit.tools.autosweep.BinarySweepTree(bounds, sols, sweptvar, costposy)

	Bases: object

Spans a line segment. May contain two subtrees that divide the segment.

	boundstwo-element list

	The left and right boundaries of the segment

	solstwo-element list

	The left and right solutions of the segment

	costsarray

	The left and right logcosts of the segment

	splitsNone or two-element list

	If not None, contains the left and right subtrees

	splitvalNone or float

	The worst-error point, where the split will be if tolerance is too low

	splitlbNone or float

	The cost lower bound at splitval

	splitubNone or float

	The cost upper bound at splitval

	
add_split(splitval, splitsol)

	Creates subtrees from bounds[0] to splitval and splitval to bounds[1]

	
add_splitcost(splitval, splitlb, splitub)

	Adds a splitval, lower bound, and upper bound

	
cost_at(_, value, bound=None)

	Logspace interpolates between split and costs. Guaranteed bounded.

	
min_bst(value)

	Returns smallest bst around value.

	
posy_at(posy, value)

	Logspace interpolates between sols to get posynomial values.

No guarantees, just like a regular sweep.

	
sample_at(values)

	Creates a SolutionOracle at a given range of values

	
solarray

	Returns a solution array of all the solutions in an autosweep

	
sollist

	Returns a list of all the solutions in an autosweep

	
class gpkit.tools.autosweep.SolutionOracle(bst, sampled_at)

	Bases: object

Acts like a SolutionArray for autosweeps

	
cost_lb()

	Gets cost lower bounds from the BST and units them

	
cost_ub()

	Gets cost upper bounds from the BST and units them

	
plot(posys=None, axes=None)

	Plots the sweep for each posy

	
solarray

	Returns a solution array of all the solutions in an autosweep

	
gpkit.tools.autosweep.autosweep_1d(model, logtol, sweepvar, bounds, **solvekwargs)

	Autosweep a model over one sweepvar

	
gpkit.tools.autosweep.get_tol(costs, bounds, sols, variable)

	Gets the intersection point and corresponding bounds from two solutions.

	
gpkit.tools.autosweep.recurse_splits(model, bst, variable, logtol, solvekwargs, sols)

	Recursively splits a BST until logtol is reached

gpkit.tools.docstring module

Docstring-parsing methods

	
gpkit.tools.docstring.check_and_parse_flag(string, flag, declaration_func=None)

	Checks for instances of flag in string and parses them.

	
gpkit.tools.docstring.constant_declare(string, flag, idx2, countstr)

	Turns Variable declarations into Constant ones

	
gpkit.tools.docstring.expected_unbounded(instance, doc)

	Gets expected-unbounded variables from a string

	
gpkit.tools.docstring.parse_variables(string)

	Parses a string to determine what variables to create from it

	
gpkit.tools.docstring.variable_declaration(nameval, units, label, line)

	Turns parsed output into a Variable declaration

	
gpkit.tools.docstring.vv_declare(string, flag, idx2, countstr)

	Turns Variable declarations into VectorVariable ones

gpkit.tools.fmincon module

A module to facilitate testing GPkit against fmincon

	
gpkit.tools.fmincon.generate_mfiles(model, logspace=False, algorithm='interior-point', guess='ones', gradobj='on', gradconstr='on', writefiles=True)

	A method for preparing fmincon input files to run a GPkit program

	INPUTS:

	model [GPkit model] The model to replicate in fmincon

logspace [Boolean] Whether to re-produce the model in logspace

	algorithm: [string] Algorithm used by fmincon

	‘interior-point’: uses the interior point solver
‘SQP’: uses the sequential quadratic programming solver

	guess: [string] The type of initial guess used

	‘ones’: One for each variable
‘order-of-magnitude-floor’: The “log-floor” order of

magnitude of the GP/SP optimal
solution (i.e. O(99)=10)

	‘order-of-magnitude-round’: The “log-nearest” order of

	magnitude of the GP/SP optimal
solution (i.e. O(42)=100)

	‘almost-exact-solution’: The GP/SP optimal solution rounded

	to 1 significant figure

OR
[list] The actual values of initial guess to use

	gradconstr: [string] Include analytical constraint gradients?

	‘on’: Yes
‘off’: No

	gradobj: [string] Include analytical objective gradients?

	‘on’: Yes
‘off’: No

writefiles: [Boolean] whether or not to actually write the m files

	
gpkit.tools.fmincon.make_initial_guess(model, newlist, guess='ones', logspace=False)

	Returns initial guess

gpkit.tools.spdata module

Implements SPData class

	
class gpkit.tools.spdata.SPData(model)

	Bases: gpkit.nomials.data.NomialData

Generates matrices describing an SP.

>>> spdata = SPData(m)
>>> spdata.save('example_sp.h5')

	
save(filename)

	Save spdata to an h5 file.

gpkit.tools.tools module

Non-application-specific convenience methods for GPkit

	
gpkit.tools.tools.composite_objective(*objectives, **kwargs)

	Creates a cost function that sweeps between multiple objectives.

	
gpkit.tools.tools.mdmake(filename, make_tex=True)

	Make a python file and (optional) a pandoc-ready .tex.md file

	
gpkit.tools.tools.mdparse(filename, return_tex=False)

	Parse markdown file, returning as strings python and (optionally) .tex.md

	
gpkit.tools.tools.te_exp_minus1(posy, nterm)

	Taylor expansion of e^{posy} - 1

	posygpkit.Posynomial

	Variable or expression to exponentiate

	ntermint

	Number of non-constant terms in resulting Taylor expansion

	gpkit.Posynomial

	Taylor expansion of e^{posy} - 1, carried to nterm terms

	
gpkit.tools.tools.te_secant(var, nterm)

	Taylor expansion of secant(var).

	vargpkit.monomial

	Variable or expression argument

	ntermint

	Number of non-constant terms in resulting Taylor expansion

	gpkit.Posynomial

	Taylor expansion of secant(x), carried to nterm terms

	
gpkit.tools.tools.te_tangent(var, nterm)

	Taylor expansion of tangent(var).

	vargpkit.monomial

	Variable or expression argument

	ntermint

	Number of non-constant terms in resulting Taylor expansion

	gpkit.Posynomial

	Taylor expansion of tangent(x), carried to nterm terms

Module contents

Contains miscellaneous tools including fmincon comparison tool

Citing GPkit

If you use GPkit, please cite it with the following bibtex:

@Misc{gpkit,
 author={Edward Burnell},
 title={GPkit software for geometric programming},
 howpublished={\url{https://github.com/convexengineering/gpkit}},
 year={2018},
 note={Version 0.7.0}
 }

Acknowledgements

We thank the following contributors for helping to improve GPkit:

	Marshall Galbraith for setting up continuous integration.

	Stephen Boyd [http://stanford.edu/~boyd/] for inspiration and suggestions.

	Kirsten Bray for designing the GPkit logo.

Release Notes

This page lists the changes made in each point version of gpkit.

Version 0.7.0

	Variable’s values are now used only in their first ConstraintSet; in other ConstraintSets they’re free variables

	Variable values can be preserved by setting constant=True during variable declaration

	MOSEK home directory can be set by a MSKHOME environment variable at build time

	sol(var) now always returns Pint Quantities, even if the variable is dimensionless

	sol[...][var], on the other hand, now always returns floats / numpy arrays of floats

	Optional boundedness checking in docstring (see usage in docs [http://gpkit.readthedocs.io/en/latest/modelbuilding.html#multipoint-analysis-modeling])

	Automatic boundedness checking for GPs

	Sankey diagrams [http://gpkit.readthedocs.io/en/latest/visint.html]

	Many other fixes

Version 0.6.0

	new much faster NomialMap data structure (#682)

	Many bug fixes and small improvements.

	6900 lines of code, 2200 lines of tests, 2100 lines of docstring.

Version 0.5.3

	faster SP solves (#1109)

	LinkedConstraintSet deprecated (#1110)

	Fixes to autosweep, ConstraintSet, interactive

	Solution time is now stored with soltutions (including sweeps/SPs)

	Model strings are divided with slashes (e.g. Airplane/Wing)

Version 0.5.2

	
	Added new sweep and autosweep methods to Model

	
	Added plot routines to the results of those routines to make it easy to plot a 1D sweep.

	
	Added new summary method to solution_array.

	
	It and table accept iterables of vars, will only print vars in that iterable (or, by default, all vars)

	
	Cleaned up and documented the interactive submodule

	
	removed contour and sensitivity plots

	added a 1D-sweep plotting function

	added that plotting function as an option within the control panel interface

	
	Overhauled and documented three types of variables whose value is determined by functions:

	
	calculated constants

	post-solve calculated variables

	between-GP-solves calculated variables (for Sequential Geometric Programs)

	Fix Bounded and implement debug() for SPs

	Apply subinplace to substitutions dictionary as well

	Require GP substitutions to be Numbers only

	Extend Bounded to one-sided bounds

	Print model’s numbers by default, unless "modelnums" in exclude

	Implement lazy keymapping, allowing GP/SP results to be KeyDicts

	Handle Signomial Inequalities that become Posynomial Inequalities after substitution

	Various documentation updates

	Various bug fixes

Version 0.5.1

	O(N) sums and monomial products

	Warn about invalid ConstraintSet elements

	allow setting Tight tolerance as a class attribute

	full backwards compatibility for __init__ methods

	scripts to test remote repositories

	minor fixes, tests, and refactors

	3550 lines of code, 1800 lines of tests, 1700 lines of docstring. (not counting interactive)

Version 0.5.0

	No longer recommend the use of linked variables and subinplace (see below)

	Switched default solver to MOSEK

	Added Linked Variable diagram (PR #915)

	Changed how overloaded operators interact with pint (PR #938)

	Added and documented debugging tools (PR #933)

	Added and documented vectorization tools

	Documented modular model construction

	3200 lines of code, 1800 lines of tests, 1700 lines of docstring. (not counting interactive)

Changes to named models / Model inheritance

We are deprecating the creation of named submodels with custom __init__ methods. Previously, variables created during __init__ in any class inheriting from Model were replaced by a copy with __class__.__name__ added as varkey metadata. This was slow, a bit irregular, and hacky.

We’re moving to an explicitly-irregular setup method, which (if declared for a class inheriting from Model) is automatically called during Model.__init__ inside a NamedVariables(self.__class__.__name__) environment. This 1) handles the naming of variables more explicitly and efficiently, and 2) allows us to capture variables created within setup, so that constants that are not a part of any constraint can be used directly (several examples of such template models are in the new Building Complex Models documentation).

Model.__init__ calls setup with the arguments given to the constructor, with the exception of the reserved keyword substitutions. This allows for the easy creation of a named model with custom parameter values (as in the documentation’s Beam example). setup methods should return an iterable (list, tuple, ConstraintSet, …) of constraints or nothing if the model contains no constraints. To declare a submodel cost, set self.cost during setup. However, we often find declaring a model’s cost explicitly just before solving to be a more legible practice.

In addition to permitting us to name variables at creation, and include unconstrained variables in a model, we hope that setup methods will clarify the side effects of named model creation.

Version 0.4.2

	prototype handling of SignomialEquality constraints

	fix an issue where solution tables printed incorrect units (despite the units being correct in the SolutionArray data structure)

	fix controlpanel slider display for newer versions of ipywidgets

	fix an issue where identical unit-ed variables could have different hashes

	Make the text of several error messages more informative

	Allow monomial approximation of monomials

	bug fixes and improvements to TightConstraintSet

	Don’t print results table automatically (it was unwieldy for large models). To print it, print sol.table().

	Use cvxopt’s ldl kkt solver by default for more robustness to rank issues

	Improved ConstraintSet.__getitem__, only returns top-level Variable

	Move toward the varkeys of a ConstraintSet being an immutable set

	CPI update

	numerous pylint fixes

	BoundedConstraint sets added for dual feasibility debugging

	SP sweep compatibility

Version 0.4.0

	New model for considering constraints: all constraints are considered as sets of constraints which may contain other constraints, and are asked for their substitutions / posynomial less than 1 representation as late as possible.

	Support for calling external code during an SP solve.

	New class KeyDict to allow referring to variables by name or with objects.

	Many many other bug fixes, speed ups, and refactors under the hood.

Version 0.3.4

	Modular / model composition fixes and improvements

	Working controlpanel() for Model

	ipynb and numpy dependency fixes

	printing fixes

	El Capitan fix

	slider widgets now have units

Version 0.3.2

	Assorted bug fixes

	Assorted internal improvements and simplifications

	Refactor signomial constraints, resulting in smarter SP heuristic

	Simplify and strengthen equality testing for nomials

	Not counting submodules, went from 2400 to 2500 lines of code and from 1050 to 1170 lines of docstrings and comments.

Version 0.3

	Integrated GP and SP creation under the Model class

	Improved and simplified under-the-hood internals of GPs and SPs

	New experimental SP heuristic

	Improved test coverage

	Handles vectors which are partially constants, partially free

	Simplified interaction with Model objects and made it more pythonic

	Added SP “step” method to allow single-stepping through an SP

	Isolated and corrected some solver-specific behavior

	Fully allowed substitutions of variables for 0 (commit 4631255)

	Use “with” to create a signomials environment (commit cd8d581)

	Continuous integration improvements, thanks @galbramc !

	Not counting subpackages, went from 2200 to 2400 lines of code (additions were mostly longer error messages) and from 650 to 1050 lines of docstrings and comments.

	Add automatic feasibility-analysis methods to Model and GP

	Simplified solver logging and printing, making it easier to access solver output.

Version 0.2

	Various bug fixes

	Python 3 compatibility

	Added signomial programming support (alpha quality, may be wrong)

	Added composite objectives

	Parallelized sweeping

	Better table printing

	Linked sweep variables

	Better error messages

	Closest feasible point capability

	Improved install process (no longer requires ctypesgen; auto-detects MOSEK version)

	Added examples: wind turbine, modular GP, examples from 1967 book, maintenance (part replacement)

	Documentation grew by ~70%

	Added Advanced Commands section to documentation

	Many additional unit tests (more than doubled testing lines of code)

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gpkit	

 	
 	
 gpkit.build	

 	
 	
 gpkit.constraints	

 	
 	
 gpkit.constraints.array	

 	
 	
 gpkit.constraints.bounded	

 	
 	
 gpkit.constraints.costed	

 	
 	
 gpkit.constraints.gp	

 	
 	
 gpkit.constraints.model	

 	
 	
 gpkit.constraints.prog_factories	

 	
 	
 gpkit.constraints.relax	

 	
 	
 gpkit.constraints.set	

 	
 	
 gpkit.constraints.sgp	

 	
 	
 gpkit.constraints.sigeq	

 	
 	
 gpkit.constraints.single_equation	

 	
 	
 gpkit.constraints.tight	

 	
 	
 gpkit.exceptions	

 	
 	
 gpkit.globals	

 	
 	
 gpkit.interactive	

 	
 	
 gpkit.interactive.plot_sweep	

 	
 	
 gpkit.interactive.plotting	

 	
 	
 gpkit.interactive.ractor	

 	
 	
 gpkit.keydict	

 	
 	
 gpkit.nomials	

 	
 	
 gpkit.nomials.array	

 	
 	
 gpkit.nomials.core	

 	
 	
 gpkit.nomials.data	

 	
 	
 gpkit.nomials.map	

 	
 	
 gpkit.nomials.math	

 	
 	
 gpkit.nomials.substitution	

 	
 	
 gpkit.nomials.variables	

 	
 	
 gpkit.repr_conventions	

 	
 	
 gpkit.small_classes	

 	
 	
 gpkit.small_scripts	

 	
 	
 gpkit.solution_array	

 	
 	
 gpkit.tools	

 	
 	
 gpkit.tools.autosweep	

 	
 	
 gpkit.tools.docstring	

 	
 	
 gpkit.tools.fmincon	

 	
 	
 gpkit.tools.spdata	

 	
 	
 gpkit.tools.tools	

 	
 	
 gpkit.varkey	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	add() (gpkit.keydict.KeySet method)

 	add_meq_bounds() (in module gpkit.constraints.set)

 	add_split() (gpkit.tools.autosweep.BinarySweepTree method)

 	add_splitcost() (gpkit.tools.autosweep.BinarySweepTree method)

 	append() (gpkit.constraints.set.ConstraintSet method)

 	(gpkit.small_classes.CootMatrix method)

 	(gpkit.small_classes.DictOfLists method)

 	append_sub() (in module gpkit.nomials.substitution)

 	array_constraint() (in module gpkit.nomials.array)

 	ArrayConstraint (class in gpkit.constraints.array)

 	ArrayVariable (class in gpkit.nomials.variables)

 	as_approxsgt() (gpkit.nomials.math.SignomialInequality method)

 	(gpkit.nomials.math.SingleSignomialEquality method)

 	as_approxslt() (gpkit.nomials.math.SignomialInequality method)

 	(gpkit.nomials.math.SingleSignomialEquality method)

 	
 	as_gpconstr() (gpkit.constraints.model.Model method)

 	(gpkit.constraints.set.ConstraintSet method)

 	(gpkit.nomials.math.PosynomialInequality method)

 	(gpkit.nomials.math.SignomialInequality method)

 	(gpkit.nomials.math.SingleSignomialEquality method)

 	as_posyslt1() (gpkit.constraints.set.ConstraintSet method)

 	(gpkit.nomials.math.MonomialEquality method)

 	(gpkit.nomials.math.PosynomialInequality method)

 	(gpkit.nomials.math.SignomialInequality method)

 	(gpkit.nomials.math.SingleSignomialEquality method)

 	assign_axes() (in module gpkit.interactive.plot_sweep)

 	atindex() (gpkit.small_classes.DictOfLists method)

 	autosweep() (gpkit.constraints.model.Model method)

 	autosweep_1d() (in module gpkit.tools.autosweep)

B

 	
 	begin_variable_naming() (in module gpkit.globals)

 	bin_dir (gpkit.build.Mosek attribute)

 	BinarySweepTree (class in gpkit.tools.autosweep)

 	
 	Bounded (class in gpkit.constraints.bounded)

 	build (gpkit.build.SolverBackend attribute)

 	build() (gpkit.build.Mosek method)

 	build_gpkit() (in module gpkit.build)

C

 	
 	c (gpkit.nomials.math.Monomial attribute)

 	call() (in module gpkit.build)

 	check_and_parse_flag() (in module gpkit.tools.docstring)

 	check_boundaries() (gpkit.constraints.bounded.Bounded method)

 	check_mono_eq_bounds() (in module gpkit.constraints.gp)

 	check_solution() (gpkit.constraints.gp.GeometricProgram method)

 	classify() (gpkit.small_classes.DictOfLists method)

 	clean_value() (in module gpkit.keydict)

 	collapse_arrays (gpkit.keydict.KeyDict attribute)

 	(gpkit.keydict.KeySet attribute)

 	compare() (in module gpkit.interactive.plotting)

 	composite_objective() (in module gpkit.tools.tools)

 	constant_declare() (in module gpkit.tools.docstring)

 	ConstantsRelaxed (class in gpkit.constraints.relax)

 	
 	ConstraintSet (class in gpkit.constraints.set)

 	ConstraintsRelaxed (class in gpkit.constraints.relax)

 	ConstraintsRelaxedEqually (class in gpkit.constraints.relax)

 	controlpanel() (gpkit.constraints.costed.CostedConstraintSet method)

 	CootMatrix (class in gpkit.small_classes)

 	copy() (gpkit.small_classes.HashVector method)

 	cost_at() (gpkit.tools.autosweep.BinarySweepTree method)

 	cost_lb() (gpkit.tools.autosweep.SolutionOracle method)

 	cost_ub() (gpkit.tools.autosweep.SolutionOracle method)

 	CostedConstraintSet (class in gpkit.constraints.costed)

 	Count (class in gpkit.small_classes)

 	cs (gpkit.nomials.data.NomialData attribute)

 	csmap (gpkit.nomials.map.NomialMap attribute)

 	CVXopt (class in gpkit.build)

D

 	
 	debug() (gpkit.constraints.model.Model method)

 	DictOfLists (class in gpkit.small_classes)

 	diff() (gpkit.nomials.data.NomialData method)

 	(gpkit.nomials.map.NomialMap method)

 	(gpkit.nomials.math.Signomial method)

 	(in module gpkit.build)

 	
 	dot() (gpkit.small_classes.CootMatrix method)

E

 	
 	end_variable_naming() (in module gpkit.globals)

 	exp (gpkit.nomials.math.Monomial attribute)

 	expected_unbounded() (in module gpkit.tools.docstring)

 	
 	expmap (gpkit.nomials.map.NomialMap attribute)

 	expopt_files (gpkit.build.Mosek attribute)

 	exps (gpkit.nomials.data.NomialData attribute)

F

 	
 	flags (gpkit.build.Mosek attribute)

 	flat() (gpkit.constraints.set.ConstraintSet method)

 	
 	format_and_label_axes() (in module gpkit.interactive.plot_sweep)

 	func_opers (gpkit.constraints.single_equation.SingleEquationConstraint attribute)

G

 	
 	gen() (gpkit.constraints.gp.GeometricProgram method)

 	genA() (in module gpkit.constraints.gp)

 	generate_mfiles() (in module gpkit.tools.fmincon)

 	GeometricProgram (class in gpkit.constraints.gp)

 	get() (gpkit.keydict.KeyDict method)

 	get_relaxed() (in module gpkit.constraints.model)

 	get_tol() (in module gpkit.tools.autosweep)

 	gp() (gpkit.constraints.model.Model method)

 	(gpkit.constraints.sgp.SequentialGeometricProgram method)

 	gpkit (module)

 	gpkit.build (module)

 	gpkit.constraints (module)

 	gpkit.constraints.array (module)

 	gpkit.constraints.bounded (module)

 	gpkit.constraints.costed (module)

 	gpkit.constraints.gp (module)

 	gpkit.constraints.model (module)

 	gpkit.constraints.prog_factories (module)

 	gpkit.constraints.relax (module)

 	gpkit.constraints.set (module)

 	gpkit.constraints.sgp (module)

 	gpkit.constraints.sigeq (module)

 	gpkit.constraints.single_equation (module)

 	gpkit.constraints.tight (module)

 	gpkit.exceptions (module)

 	
 	gpkit.globals (module)

 	gpkit.interactive (module)

 	gpkit.interactive.plot_sweep (module)

 	gpkit.interactive.plotting (module)

 	gpkit.interactive.ractor (module)

 	gpkit.keydict (module)

 	gpkit.nomials (module)

 	gpkit.nomials.array (module)

 	gpkit.nomials.core (module)

 	gpkit.nomials.data (module)

 	gpkit.nomials.map (module)

 	gpkit.nomials.math (module)

 	gpkit.nomials.substitution (module)

 	gpkit.nomials.variables (module)

 	gpkit.repr_conventions (module)

 	gpkit.small_classes (module)

 	gpkit.small_scripts (module)

 	gpkit.solution_array (module)

 	gpkit.tools (module)

 	gpkit.tools.autosweep (module)

 	gpkit.tools.docstring (module)

 	gpkit.tools.fmincon (module)

 	gpkit.tools.spdata (module)

 	gpkit.tools.tools (module)

 	gpkit.varkey (module)

H

 	
 	HashVector (class in gpkit.small_classes)

I

 	
 	init_gp() (gpkit.constraints.sgp.SequentialGeometricProgram method)

 	insenss_table() (in module gpkit.solution_array)

 	installed (gpkit.build.SolverBackend attribute)

 	
 	interact() (gpkit.constraints.costed.CostedConstraintSet method)

 	InvalidGPConstraint

 	is_sweepvar() (in module gpkit.small_scripts)

 	isfile() (in module gpkit.build)

K

 	
 	KeyDict (class in gpkit.keydict)

 	
 	keymapping (gpkit.keydict.KeyDict attribute)

 	KeySet (class in gpkit.keydict)

L

 	
 	latex() (gpkit.constraints.set.ConstraintSet method)

 	(gpkit.constraints.single_equation.SingleEquationConstraint method)

 	(gpkit.nomials.array.NomialArray method)

 	(gpkit.nomials.core.Nomial method)

 	(gpkit.varkey.VarKey method)

 	latex_num() (in module gpkit.small_scripts)

 	latex_opers (gpkit.constraints.single_equation.SingleEquationConstraint attribute)

 	latex_unitstr() (gpkit.varkey.VarKey method)

 	left (gpkit.nomials.array.NomialArray attribute)

 	
 	lib_name (gpkit.build.Mosek attribute)

 	lib_path (gpkit.build.Mosek attribute)

 	load_settings() (in module gpkit.globals)

 	localsolve() (gpkit.constraints.model.Model method)

 	(gpkit.constraints.sgp.SequentialGeometricProgram method)

 	log() (in module gpkit.build)

 	look (gpkit.build.SolverBackend attribute)

 	look() (gpkit.build.CVXopt method)

 	(gpkit.build.Mosek method)

 	(gpkit.build.MosekCLI method)

M

 	
 	mag() (in module gpkit.small_scripts)

 	make_initial_guess() (in module gpkit.tools.fmincon)

 	matrix_converter() (in module gpkit.small_classes)

 	mdmake() (in module gpkit.tools.tools)

 	mdparse() (in module gpkit.tools.tools)

 	min_bst() (gpkit.tools.autosweep.BinarySweepTree method)

 	mmap() (gpkit.nomials.map.NomialMap method)

 	
 	Model (class in gpkit.constraints.model)

 	mono_approximation() (gpkit.nomials.math.Monomial method)

 	(gpkit.nomials.math.Signomial method)

 	mono_lower_bound() (gpkit.nomials.math.Posynomial method)

 	Monomial (class in gpkit.nomials.math)

 	MonomialEquality (class in gpkit.nomials.math)

 	Mosek (class in gpkit.build)

 	MosekCLI (class in gpkit.build)

N

 	
 	name (gpkit.build.CVXopt attribute)

 	(gpkit.build.Mosek attribute)

 	(gpkit.build.MosekCLI attribute)

 	(gpkit.build.SolverBackend attribute)

 	(gpkit.constraints.model.Model attribute)

 	NamedVariables (class in gpkit.globals)

 	naming (gpkit.constraints.model.Model attribute)

 	(gpkit.varkey.VarKey attribute)

 	
 	new_unnamed_id() (gpkit.varkey.VarKey class method)

 	next() (gpkit.small_classes.Count method)

 	Nomial (class in gpkit.nomials.core)

 	nomial_latex_helper() (in module gpkit.small_scripts)

 	NomialArray (class in gpkit.nomials.array)

 	NomialData (class in gpkit.nomials.data)

 	NomialMap (class in gpkit.nomials.map)

 	nomials (gpkit.nomials.math.ScalarSingleEquationConstraint attribute)

 	num (gpkit.constraints.model.Model attribute)

O

 	
 	outer() (gpkit.nomials.array.NomialArray method)

P

 	
 	padleft() (gpkit.nomials.array.NomialArray method)

 	padright() (gpkit.nomials.array.NomialArray method)

 	parse_and_index() (gpkit.keydict.KeyDict method)

 	parse_subs() (in module gpkit.nomials.substitution)

 	parse_variables() (in module gpkit.tools.docstring)

 	patches (gpkit.build.Mosek attribute)

 	pathjoin() (in module gpkit.build)

 	plot() (gpkit.solution_array.SolutionArray method)

 	(gpkit.tools.autosweep.SolutionOracle method)

 	plot_1dsweepgrid() (in module gpkit.interactive.plot_sweep)

 	plot_convergence() (in module gpkit.interactive.plotting)

 	posy_at() (gpkit.tools.autosweep.BinarySweepTree method)

 	
 	posy_negy() (gpkit.nomials.math.Signomial method)

 	Posynomial (class in gpkit.nomials.math)

 	PosynomialInequality (class in gpkit.nomials.math)

 	process_result() (gpkit.constraints.bounded.Bounded method)

 	(gpkit.constraints.relax.ConstantsRelaxed method)

 	(gpkit.constraints.set.ConstraintSet method)

 	(gpkit.constraints.single_equation.SingleEquationConstraint method)

 	(gpkit.constraints.tight.Tight method)

 	prod() (gpkit.nomials.array.NomialArray method)

 	(gpkit.nomials.core.Nomial method)

 	program (gpkit.constraints.model.Model attribute)

 	(gpkit.solution_array.SolutionArray attribute)

R

 	
 	ractorjs() (in module gpkit.interactive.ractor)

 	ractorpy() (in module gpkit.interactive.ractor)

 	raise_badelement() (in module gpkit.constraints.set)

 	raise_elementhasnumpybools() (in module gpkit.constraints.set)

 	rebuild() (in module gpkit.build)

 	recurse_splits() (in module gpkit.tools.autosweep)

 	reltol (gpkit.constraints.tight.Tight attribute)

 	remove_zeros() (gpkit.nomials.map.NomialMap method)

 	replacedir() (in module gpkit.build)

 	
 	reset_varkeys() (gpkit.constraints.costed.CostedConstraintSet method)

 	(gpkit.constraints.set.ConstraintSet method)

 	results_table() (in module gpkit.solution_array)

 	right (gpkit.nomials.array.NomialArray attribute)

 	rootconstr_latex() (gpkit.constraints.costed.CostedConstraintSet method)

 	(gpkit.constraints.set.ConstraintSet method)

 	rootconstr_str() (gpkit.constraints.costed.CostedConstraintSet method)

 	(gpkit.constraints.set.ConstraintSet method)

 	run_sweep() (in module gpkit.constraints.prog_factories)

S

 	
 	sample_at() (gpkit.tools.autosweep.BinarySweepTree method)

 	save() (gpkit.tools.spdata.SPData method)

 	ScalarSingleEquationConstraint (class in gpkit.nomials.math)

 	sens_from_dual() (gpkit.constraints.bounded.Bounded method)

 	(gpkit.constraints.set.ConstraintSet method)

 	(gpkit.nomials.math.MonomialEquality method)

 	(gpkit.nomials.math.PosynomialInequality method)

 	senss_table() (in module gpkit.solution_array)

 	SequentialGeometricProgram (class in gpkit.constraints.sgp)

 	showcadtoon() (in module gpkit.interactive.ractor)

 	Signomial (class in gpkit.nomials.math)

 	SignomialEquality (class in gpkit.constraints.sigeq)

 	SignomialInequality (class in gpkit.nomials.math)

 	SignomialsEnabled (class in gpkit.globals)

 	SingleEquationConstraint (class in gpkit.constraints.single_equation)

 	SingleSignomialEquality (class in gpkit.nomials.math)

 	solarray (gpkit.tools.autosweep.BinarySweepTree attribute)

 	(gpkit.tools.autosweep.SolutionOracle attribute)

 	sollist (gpkit.tools.autosweep.BinarySweepTree attribute)

 	solution (gpkit.constraints.model.Model attribute)

 	SolutionArray (class in gpkit.solution_array)

 	SolutionOracle (class in gpkit.tools.autosweep)

 	solve() (gpkit.constraints.gp.GeometricProgram method)

 	(gpkit.constraints.model.Model method)

 	SolverBackend (class in gpkit.build)

 	SolverLog (class in gpkit.small_classes)

 	sp() (gpkit.constraints.model.Model method)

 	SPData (class in gpkit.tools.spdata)

 	
 	str_without() (gpkit.constraints.set.ConstraintSet method)

 	(gpkit.constraints.single_equation.SingleEquationConstraint method)

 	(gpkit.nomials.array.NomialArray method)

 	(gpkit.nomials.core.Nomial method)

 	(gpkit.varkey.VarKey method)

 	sub (gpkit.nomials.core.Nomial attribute)

 	sub() (gpkit.constraints.single_equation.SingleEquationConstraint method)

 	(gpkit.nomials.array.NomialArray method)

 	(gpkit.nomials.map.NomialMap method)

 	(gpkit.nomials.math.Signomial method)

 	(gpkit.nomials.variables.Variable method)

 	subconstr_latex() (gpkit.constraints.model.Model method)

 	(gpkit.constraints.set.ConstraintSet method)

 	(gpkit.constraints.single_equation.SingleEquationConstraint method)

 	subconstr_str() (gpkit.constraints.model.Model method)

 	(gpkit.constraints.set.ConstraintSet method)

 	(gpkit.constraints.single_equation.SingleEquationConstraint method)

 	subinplace() (gpkit.constraints.array.ArrayConstraint method)

 	(gpkit.constraints.costed.CostedConstraintSet method)

 	(gpkit.constraints.set.ConstraintSet method)

 	(gpkit.nomials.math.ScalarSingleEquationConstraint method)

 	(gpkit.nomials.math.Signomial method)

 	(in module gpkit.nomials.map)

 	subinto() (gpkit.solution_array.SolutionArray method)

 	subscripts (gpkit.varkey.VarKey attribute)

 	sum() (gpkit.nomials.array.NomialArray method)

 	(gpkit.nomials.core.Nomial method)

 	summary() (gpkit.solution_array.SolutionArray method)

 	sweep() (gpkit.constraints.model.Model method)

T

 	
 	table() (gpkit.solution_array.SolutionArray method)

 	table_titles (gpkit.solution_array.SolutionArray attribute)

 	te_exp_minus1() (in module gpkit.tools.tools)

 	te_secant() (in module gpkit.tools.tools)

 	te_tangent() (in module gpkit.tools.tools)

 	Tight (class in gpkit.constraints.tight)

 	to() (gpkit.nomials.core.Nomial method)

 	(gpkit.nomials.map.NomialMap method)

 	(gpkit.nomials.variables.Variable method)

 	to_arrays() (gpkit.small_classes.DictOfLists method)

 	
 	tocoo() (gpkit.small_classes.CootMatrix method)

 	tocsc() (gpkit.small_classes.CootMatrix method)

 	tocsr() (gpkit.small_classes.CootMatrix method)

 	todense() (gpkit.small_classes.CootMatrix method)

 	todia() (gpkit.small_classes.CootMatrix method)

 	todok() (gpkit.small_classes.CootMatrix method)

 	topsenss_filter() (in module gpkit.solution_array)

 	topsenss_table() (in module gpkit.solution_array)

 	topvar() (gpkit.constraints.set.ConstraintSet method)

 	try_str_without() (in module gpkit.small_scripts)

 	trycall() (in module gpkit.constraints.single_equation)

U

 	
 	unique_varkeys (gpkit.constraints.set.ConstraintSet attribute)

 	units (gpkit.nomials.array.NomialArray attribute)

 	(gpkit.nomials.map.NomialMap attribute)

 	units_of_product() (gpkit.nomials.map.NomialMap method)

 	unitstr() (gpkit.nomials.core.Nomial method)

 	(gpkit.varkey.VarKey method)

 	(in module gpkit.repr_conventions)

 	
 	update() (gpkit.keydict.KeyDict method)

 	(gpkit.keydict.KeySet method)

 	update_keymap() (gpkit.keydict.KeyDict method)

V

 	
 	value (gpkit.nomials.core.Nomial attribute)

 	values (gpkit.nomials.data.NomialData attribute)

 	Variable (class in gpkit.nomials.variables)

 	variable_declaration() (in module gpkit.tools.docstring)

 	variables_byname() (gpkit.constraints.set.ConstraintSet method)

 	VarKey (class in gpkit.varkey)

 	varkey_bounds() (in module gpkit.constraints.bounded)

 	varkeys (gpkit.constraints.set.ConstraintSet attribute)

 	(gpkit.nomials.data.NomialData attribute)

 	
 	varlocs (gpkit.nomials.data.NomialData attribute)

 	veckeyed() (in module gpkit.small_scripts)

 	veclinkedfn() (in module gpkit.nomials.variables)

 	VectorizableVariable (class in gpkit.nomials.variables)

 	Vectorize (class in gpkit.globals)

 	vectorize() (gpkit.nomials.array.NomialArray method)

 	verify_docstring() (gpkit.constraints.model.Model method)

 	version (gpkit.build.Mosek attribute)

 	vv_declare() (in module gpkit.tools.docstring)

W

 	
 	write() (gpkit.small_classes.SolverLog method)

Z

 	
 	zero_lower_unbounded_variables() (gpkit.constraints.model.Model method)

gpkit

	Glossary
	gpkit package
	Subpackages
	gpkit.constraints package

	gpkit.interactive package

	gpkit.nomials package

	gpkit.tools package

	Submodules

	gpkit.build module

	gpkit.exceptions module

	gpkit.globals module

	gpkit.keydict module

	gpkit.repr_conventions module

	gpkit.small_classes module

	gpkit.small_scripts module

	gpkit.solution_array module

	gpkit.varkey module

	Module contents

[image: ../../_images/boxlogo.svg]

BOX

Maximize volume while limiting the aspect ratios and area of the
sides.

This is a simple demonstration of
gpkit [http://www.github.com/convexopt/gpkit], based on an example
from A Tutorial on Geometric
Programming [http://stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf] by
Boyd et al..

Set up the modelling environment

First we’ll to import GPkit and turn on \(\LaTeX\) printing for
GPkit variables and equations.

import gpkit
import gpkit.interactive
gpkit.interactive.init_printing()

Now we declare the optimisation parameters:

alpha = gpkit.Variable("\\alpha", 2, "-", "lower limit, wall aspect ratio")
beta = gpkit.Variable("\\beta", 10, "-", "upper limit, wall aspect ratio")
gamma = gpkit.Variable("\\gamma", 2, "-", "lower limit, floor aspect ratio")
delta = gpkit.Variable("\\delta", 10, "-", "upper limit, floor aspect ratio")
A_wall = gpkit.Variable("A_{wall}", 200, "m^2", "upper limit, wall area")
A_floor = gpkit.Variable("A_{floor}", 50, "m^2", "upper limit, floor area")

Next, we declare the decision variables:

var = gpkit.Variable # a convenient shorthand

h = var("h", "m", "height")
w = var("w", "m", "width")
d = var("d", "m", "depth")

Then we form equations of the system:

V = h*w*d
constraints = [A_wall >= 2*h*w + 2*h*d,
 A_floor >= w*d,
 h/w >= alpha,
 h/w <= beta,
 d/w >= gamma,
 d/w <= delta]

Formulate the optimisation problem

Here we write the optimisation problem as a standard form geometric
program. Note that by putting \(\tfrac{1}{V}\) as our cost function,
we are maximizing \(V\).

gp = gpkit.GP(1/V, constraints)

Now we can check that our equations are correct by using the built-in
latex printing.

gp

\[\begin{split}\begin{array}[ll]
\text{}
\text{minimize}
 & \frac{1}{d h w}\mathrm{\left[\tfrac{1}{m^{3}} \right]} \\
\text{subject to}
 & A_{wall} \geq 2d h + 2h w \\
 & A_{floor} \geq d w \\
 & \alpha \leq \frac{h}{w} \\
 & \beta \geq \frac{h}{w} \\
 & \gamma \leq \frac{d}{w} \\
 & \delta \geq \frac{d}{w} \\
\text{substituting}
 & A_{floor} = 50 \\
 & A_{wall} = 200 \\
 & \alpha = 2 \\
 & \beta = 10 \\
 & \delta = 10 \\
 & \gamma = 2 \\
\end{array}\end{split}\]

That looks fine, but let’s change \(A_{floor}\) to \(100\), just
for fun.

Note that replace=True will be needed, since \(A_{floor}\) has
already been substituted in.

gp.sub(A_floor, 100, replace=True) # (var, val) substitution syntax

And heck, why not change \(\alpha\) and \(\gamma\) to \(1\)
while we’re at it?

gp.sub({alpha: 1, gamma: 1}, replace=True) # ({var1: val1, var2: val2}) substitution syntax

Now check that those changes took:

gp

\[\begin{split}\begin{array}[ll]
\text{}
\text{minimize}
 & \frac{1}{d h w}\mathrm{\left[\tfrac{1}{m^{3}} \right]} \\
\text{subject to}
 & A_{wall} \geq 2d h + 2h w \\
 & A_{floor} \geq d w \\
 & \alpha \leq \frac{h}{w} \\
 & \beta \geq \frac{h}{w} \\
 & \gamma \leq \frac{d}{w} \\
 & \delta \geq \frac{d}{w} \\
\text{substituting}
 & A_{floor} = 100 \\
 & A_{wall} = 200 \\
 & \alpha = 1 \\
 & \beta = 10 \\
 & \delta = 10 \\
 & \gamma = 1 \\
\end{array}\end{split}\]

Looks good!

Solve the GP

sol = gp.solve()

Using solver 'cvxopt'
Solving took 0.0184 seconds

Analyse results

print sol.table()

0.0025981 : Cost
 | Free variables
 d : 11.5 [m] depth
 h : 5.77 [m] height
 w : 5.77 [m] width
 |
 | Constants
A_{floor} : 100 [m**2] upper limit, floor area
 A_{wall} : 200 [m**2] upper limit, wall area
 alpha : 1 [-] lower limit, wall aspect ratio
 beta : 10 [-] upper limit, wall aspect ratio
 delta : 10 [-] upper limit, floor aspect ratio
 gamma : 1 [-] lower limit, floor aspect ratio
 |
 | Constant sensitivities
 A_{wall} : -1.5 [-] upper limit, wall area
 alpha : 0.5 [-] lower limit, wall aspect ratio
 |

Hmm, why didn’t \(A_{floor}\) show up in the sensitivities list?

sol["sensitivities"]["constants"][A_floor]

-3.4698494246624108e-09

Its sensitivity is tiny; changing it near this value doesn’t affect the
cost at all; that constraint is loose! Let’s sweep over a range of
\(A_{floor}\) values to figure out where it becomes loose.

Sweep and plot results

Import the plotting library matplotlib and the math library numpy:

%matplotlib inline
%config InlineBackend.figure_format = 'retina' # for high-DPI displays
import matplotlib.pyplot as plt
import numpy as np

Solve for values of \(A_{floor}\) from 10 to 100 using a “sweep”
substitution:

gp.sub(A_floor, ('sweep', np.linspace(10, 100, 50)), replace=True)
sol = gp.solve()
print sol.table()

Using solver 'cvxopt'
Sweeping 1 variables over 50 passes
Solving took 0.547 seconds
 0.0032211 : Cost (average of 50 values)
 | Free variables (average)
 d : 8.33 [m] depth
 h : 7.74 [m] height
 w : 5.69 [m] width
 |
 | Constants (average)
 A_{floor} : 55 [m**2] upper limit, floor area
 A_{wall} : 200 [m**2] upper limit, wall area
 alpha : 1 [-] lower limit, wall aspect ratio
 beta : 10 [-] upper limit, wall aspect ratio
 delta : 10 [-] upper limit, floor aspect ratio
 gamma : 1 [-] lower limit, floor aspect ratio
 |
 | Constant sensitivities (average)
 A_{floor} : -0.274 [-] upper limit, floor area
 A_{wall} : -1.23 [-] upper limit, wall area
 alpha : 0.226 [-] lower limit, wall aspect ratio
 |

It seems we got some sensitivity out of \(A_{floor}\) on average
over these points; let’s plot it:

plt.plot(sol(A_floor), sol(d), linewidth=1, alpha=0.5)
plt.plot(sol(A_floor), sol(h), linewidth=1, alpha=0.5)
plt.plot(sol(A_floor), sol(w), '--', linewidth=2, alpha=0.5)
plt.legend(['depth', 'height', 'width'])
plt.ylabel("Optimal dimensions [m]")
_ = plt.xlabel("A_floor [m^2]") # the _ catches the returned label object, since we don't need it

[image: ../../_images/Box_34_0.png]
There’s an interesting elbow when
\(A_{floor} \approx 50 \mathrm{\ m^2}\).

Interactive analysis

Let’s investigate it with the
cadtoons [https://github.com/bqpd/cadtoons] library. Running
cadtoon.py box.svg in this folder creates an interactive SVG graphic
for us.

First, import the functions to display HTML in iPython Notebook, and the
ractivejs [http://www.ractivejs.org/] library.

from IPython.display import HTML, display
from string import Template

Then write controls that link the optimization to the animation. It’s
generally very helpful to play around with with writing constraints in
the cadtoons sandbox before copying the javascript code
from there to iPython.

ractor = Template("""
var w = $w/10,
 h = $h/10,
 d = $d/10""")

def ractorfn(sol):
 return ractor.substitute(w=sol(w), d=sol(d), h=sol(h))

constraints="""
var dw = 50*(w-1),
 dh = 50*(h-1),
 dd = 50*(d-1)

r.plan.scalex = w
r.plan.scaley = d

r.top.scalex = w
r.top.scaley = h
r.top.y = -dh -dd
r.bottom.scalex = w
r.bottom.scaley = h
r.bottom.y = dh + dd

r.left.scalex = h
r.left.scaley = d
r.left.x = -dh - dw
r.right.scalex = h
r.right.scaley = d
r.right.x = dh + dw """

def ractivefn(gp):
 sol = gp.solution
 live = "<script>" + ractorfn(sol) + constraints + "</script>"
 display(HTML(live))
 # if you enable the line below, you can try navigating the sliders by sensitivities
 # print sol.table(["cost", "sensitivities"])

Now that the display window has been created, let’s use an iPython
widget to explore the “design space” of our box. This widget runs the
gpkit solver every time a slider is changed, so you only solve the
points you see.

with open("box.gpkit", 'r') as file:
 display(HTML(file.read()))
display(HTML(display(HTML("<style> #ractivecontainer"
 "{position:absolute; height: 0;"
 "right: 0; top: 5em;} </style>"))))

<IPython.core.display.HTML at 0x7fd2dce97850>

gpkit.interactive.widget(gp, ractivefn, {
 "A_{floor}": (10, 1000, 10), "A_{wall}": (10, 1000, 10),
 "\\delta": (0.1, 20, 0.1), "\\gamma": (0.1, 20, 0.1),
 "\\alpha": (0.1, 20, 0.1), "\\beta": (0.1, 20, 0.1), })

Now that we’ve found a good