Examples

iPython Notebook Examples

More examples, including some with in-depth explanations and interactive visualizations, can be seen on nbviewer.

A Trivial GP

The most trivial GP we can think of: minimize \(x\) subject to the constraint \(x \ge 1\).

"Very simple problem: minimize x while keeping x greater than 1."
from gpkit import Variable, Model

# Decision variable
x = Variable("x")

# Constraint
constraints = [x >= 1]

# Objective (to minimize)
objective = x

# Formulate the Model
m = Model(objective, constraints)

# Solve the Model
sol = m.solve(verbosity=0)

# print selected results
print("Optimal cost:  %.4g" % sol["cost"])
print("Optimal x val: %s" % sol(x))

Of course, the optimal value is 1. Output:

Optimal cost:  1
Optimal x val: 1.0 dimensionless

Maximizing the Volume of a Box

This example comes from Section 2.4 of the GP tutorial, by S. Boyd et. al.

"Maximizes box volume given area and aspect ratio constraints."
from gpkit import Variable, Model

# Parameters
alpha = Variable("alpha", 2, "-", "lower limit, wall aspect ratio")
beta = Variable("beta", 10, "-", "upper limit, wall aspect ratio")
gamma = Variable("gamma", 2, "-", "lower limit, floor aspect ratio")
delta = Variable("delta", 10, "-", "upper limit, floor aspect ratio")
A_wall = Variable("A_{wall}", 200, "m^2", "upper limit, wall area")
A_floor = Variable("A_{floor}", 50, "m^2", "upper limit, floor area")

# Decision variables
h = Variable("h", "m", "height")
w = Variable("w", "m", "width")
d = Variable("d", "m", "depth")

# Constraints
constraints = [A_wall >= 2*h*w + 2*h*d,
               A_floor >= w*d,
               h/w >= alpha,
               h/w <= beta,
               d/w >= gamma,
               d/w <= delta]

# Objective function
V = h*w*d
objective = 1/V  # To maximize V, we minimize its reciprocal

# Formulate the Model
m = Model(objective, constraints)

# Solve the Model and print the results table
print m.solve(verbosity=0).table()

The output is


Cost
----
 0.003674 [1/m**3]

Free Variables
--------------
d : 8.17   [m] depth
h : 8.163  [m] height
w : 4.081  [m] width

Constants
---------
A_{floor} : 50   [m**2] upper limit, floor area
 A_{wall} : 200  [m**2] upper limit, wall area
    alpha : 2           lower limit, wall aspect ratio
     beta : 10          upper limit, wall aspect ratio
    delta : 10          upper limit, floor aspect ratio
    gamma : 2           lower limit, floor aspect ratio

Sensitivities
-------------
A_{wall} : -1.5  upper limit, wall area
   alpha : +0.5  lower limit, wall aspect ratio

Tightest Constraints
--------------------
  +1.5 : A_{wall} >= 2*d*h + 2*h*w
  +0.5 : alpha <= h*w**-1

Water Tank

Say we had a fixed mass of water we wanted to contain within a tank, but also wanted to minimize the cost of the material we had to purchase (i.e. the surface area of the tank):

"Minimizes cylindrical tank surface area for a particular volume."
from gpkit import Variable, VectorVariable, Model

M = Variable("M", 100, "kg", "Mass of Water in the Tank")
rho = Variable("\\rho", 1000, "kg/m^3", "Density of Water in the Tank")
A = Variable("A", "m^2", "Surface Area of the Tank")
V = Variable("V", "m^3", "Volume of the Tank")
d = VectorVariable(3, "d", "m", "Dimension Vector")

constraints = (A >= 2*(d[0]*d[1] + d[0]*d[2] + d[1]*d[2]),
               V == d[0]*d[1]*d[2],
               M == V*rho)

m = Model(A, constraints)
sol = m.solve(verbosity=0)
print sol.summary()

The output is


Cost
----
 1.293 [m**2]

Free Variables
--------------
A : 1.293                             [m**2] Surface Area of the Tank
V : 0.1                               [m**3] Volume of the Tank
d : [ 0.464     0.464     0.464    ]  [m]    Dimension Vector

Sensitivities
-------------
   M : +0.67  Mass of Water in the Tank
\rho : -0.67  Density of Water in the Tank

Tightest Constraints
--------------------
  +2.2 : V = d_(0,)*d_(1,)*d_(2,)
  +2.2 : M = V*\rho
    +1 : A >= 2*d_(0,)*d_(1,) + 2*d_(0,)*d_(2,) + 2*d_(1,)*d_(2,)

Simple Wing

This example comes from Section 3 of Geometric Programming for Aircraft Design Optimization, by W. Hoburg and P. Abbeel.

"Minimizes airplane drag for a simple drag and structure model."
import cPickle as pickle
import numpy as np
from gpkit import Variable, Model
pi = np.pi


# Constants
k = Variable("k", 1.2, "-", "form factor")
e = Variable("e", 0.95, "-", "Oswald efficiency factor")
mu = Variable("\\mu", 1.78e-5, "kg/m/s", "viscosity of air")
rho = Variable("\\rho", 1.23, "kg/m^3", "density of air")
tau = Variable("\\tau", 0.12, "-", "airfoil thickness to chord ratio")
N_ult = Variable("N_{ult}", 3.8, "-", "ultimate load factor")
V_min = Variable("V_{min}", 22, "m/s", "takeoff speed")
C_Lmax = Variable("C_{L,max}", 1.5, "-", "max CL with flaps down")
S_wetratio = Variable("(\\frac{S}{S_{wet}})", 2.05, "-", "wetted area ratio")
W_W_coeff1 = Variable("W_{W_{coeff1}}", 8.71e-5, "1/m",
                      "Wing Weight Coefficent 1")
W_W_coeff2 = Variable("W_{W_{coeff2}}", 45.24, "Pa",
                      "Wing Weight Coefficent 2")
CDA0 = Variable("(CDA0)", 0.031, "m^2", "fuselage drag area")
W_0 = Variable("W_0", 4940.0, "N", "aircraft weight excluding wing")

# Free Variables
D = Variable("D", "N", "total drag force")
A = Variable("A", "-", "aspect ratio")
S = Variable("S", "m^2", "total wing area")
V = Variable("V", "m/s", "cruising speed")
W = Variable("W", "N", "total aircraft weight")
Re = Variable("Re", "-", "Reynold's number")
C_D = Variable("C_D", "-", "Drag coefficient of wing")
C_L = Variable("C_L", "-", "Lift coefficent of wing")
C_f = Variable("C_f", "-", "skin friction coefficient")
W_w = Variable("W_w", "N", "wing weight")

constraints = []

# Drag model
C_D_fuse = CDA0/S
C_D_wpar = k*C_f*S_wetratio
C_D_ind = C_L**2/(pi*A*e)
constraints += [C_D >= C_D_fuse + C_D_wpar + C_D_ind]

# Wing weight model
W_w_strc = W_W_coeff1*(N_ult*A**1.5*(W_0*W*S)**0.5)/tau
W_w_surf = W_W_coeff2 * S
constraints += [W_w >= W_w_surf + W_w_strc]

# and the rest of the models
constraints += [D >= 0.5*rho*S*C_D*V**2,
                Re <= (rho/mu)*V*(S/A)**0.5,
                C_f >= 0.074/Re**0.2,
                W <= 0.5*rho*S*C_L*V**2,
                W <= 0.5*rho*S*C_Lmax*V_min**2,
                W >= W_0 + W_w]

print("SINGLE\n======")
m = Model(D, constraints)
sol = m.solve(verbosity=0)
print(sol.summary())
# save solution to a file and retrieve it
sol.save("solution.pkl")
print(sol.diff("solution.pkl"))

print("SWEEP\n=====")
N = 2
sweeps = {V_min: ("sweep", np.linspace(20, 25, N)),
          V: ("sweep", np.linspace(45, 55, N)), }
m.substitutions.update(sweeps)
sweepsol = m.solve(verbosity=0)
print(sweepsol.summary())
sol_loaded = pickle.load(open("solution.pkl"))
print(sweepsol.diff(sol_loaded))

The output is

SINGLE
======

Cost
----
 303.1 [N]

Free Variables
--------------
  A : 8.46              aspect ratio
C_D : 0.02059           Drag coefficient of wing
C_L : 0.4988            Lift coefficent of wing
C_f : 0.003599          skin friction coefficient
  D : 303.1      [N]    total drag force
 Re : 3.675e+06         Reynold's number
  S : 16.44      [m**2] total wing area
  V : 38.15      [m/s]  cruising speed
  W : 7341       [N]    total aircraft weight
W_w : 2401       [N]    wing weight

Most Sensitive
--------------
                W_0 : +1     aircraft weight excluding wing
                  e : -0.48  Oswald efficiency factor
                  k : +0.43  form factor
(\frac{S}{S_{wet}}) : +0.43  wetted area ratio
            V_{min} : -0.37  takeoff speed

Tightest Constraints
--------------------
  +1.3 : W >= W_0 + W_w
    +1 : D >= 0.5*C_D*S*V**2*\rho
    +1 : C_D >= (CDA0)*S**-1 + (\frac{S}{S_{wet}})*C_f*k + 0.318*A**-1*C_L**2*e**-1
 +0.96 : W <= 0.5*C_L*S*V**2*\rho
 +0.43 : C_f >= 0.074*Re**-0.2

Solution difference
-------------------
The largest difference is 0%

Solution sensitivity delta
--------------------------
The largest sensitivity delta is +0

SWEEP
=====

Cost
----
 [ 338       396       294       326       ] [N]

Sweep Variables
---------------
      V : [ 45        55        45        55       ]  [m/s] cruising speed
V_{min} : [ 20        20        25        25       ]  [m/s] takeoff speed

Free Variables
--------------
  A : [ 6.2       4.77      8.84      7.16     ]         aspect ratio
C_D : [ 0.0146    0.0123    0.0196    0.0157   ]         Drag coefficient of wing
C_L : [ 0.296     0.198     0.463     0.31     ]         Lift coefficent of wing
C_f : [ 0.00333   0.00314   0.00361   0.00342  ]         skin friction coefficient
  D : [ 338       396       294       326      ]  [N]    total drag force
 Re : [ 5.38e+06  7.24e+06  3.63e+06  4.75e+06 ]         Reynold's number
  S : [ 18.6      17.3      12.1      11.2     ]  [m**2] total wing area
  W : [ 6.85e+03  6.4e+03   6.97e+03  6.44e+03 ]  [N]    total aircraft weight
W_w : [ 1.91e+03  1.46e+03  2.03e+03  1.5e+03  ]  [N]    wing weight

Most Sensitive
--------------
                W_0 : [ +0.92     +0.85     +0.95     +0.85    ] aircraft weight excluding wing
            V_{min} : [ -0.82     -1        -0.41     -0.71    ] takeoff speed
                  V : [ +0.59     +0.97     +0.25     +0.75    ] cruising speed
                  k : [ +0.56     +0.63     +0.45     +0.54    ] form factor
(\frac{S}{S_{wet}}) : [ +0.56     +0.63     +0.45     +0.54    ] wetted area ratio

Tightest Constraints
(for the last sweep only)
--------------------
    +1 : W >= W_0 + W_w
    +1 : D >= 0.5*C_D*S*V**2*\rho
    +1 : C_D >= (CDA0)*S**-1 + (\frac{S}{S_{wet}})*C_f*k + 0.318*A**-1*C_L**2*e**-1
 +0.57 : W <= 0.5*C_L*S*V**2*\rho
 +0.54 : C_f >= 0.074*Re**-0.2

Solution difference
(positive means the argument is bigger)
-------------------
    C_L : [  +68.3%   +151.5%     +7.7%    +60.9%  ] Lift coefficent of wing
    W_w : [  +26.0%    +64.7%    +18.5%    +59.8%  ] wing weight
    C_D : [  +40.8%    +67.7%     +5.3%    +31.3%  ] Drag coefficient of wing
      A : [  +36.5%    +77.2%     -4.3%    +18.1%  ] aspect ratio
     Re : [  -31.7%    -49.3%     +1.1%    -22.6%  ] Reynold's number
      S : [  -11.4%     -5.2%    +36.1%    +47.1%  ] total wing area
      V : [  -15.2%    -30.6%    -15.2%    -30.6%  ] cruising speed
V_{min} : [  +10.0%    +10.0%    -12.0%    -12.0%  ] takeoff speed
      D : [  -10.3%    -23.5%     +3.0%     -7.0%  ] total drag force
      W : [   +7.2%    +14.7%     +5.4%    +13.9%  ] total aircraft weight
    C_f : [   +7.9%    +14.5%      -.2%     +5.3%  ] skin friction coefficient

Solution sensitivity delta
(positive means the argument has a higher sensitivity)
--------------------------
                  V : [  -.59    -.97    -.25    -.75  ] cruising speed
            V_{min} : [  +.45    +.67    +.05    +.34  ] takeoff speed
          C_{L,max} : [  +.23    +.34    +.02    +.17  ] max CL with flaps down
                  e : [  -.15    -.25    -.06    -.19  ] Oswald efficiency factor
                W_0 : [  +.09    +.17    +.06    +.16  ] aircraft weight excluding wing
               \rho : [  -.05    -.13    -.10    -.19  ] density of air
     W_{W_{coeff1}} : [  +.11    +.18    +.04    +.14  ] Wing Weight Coefficent 1
            N_{ult} : [  +.11    +.18    +.04    +.14  ] ultimate load factor
               \tau : [  -.11    -.18    -.04    -.14  ] airfoil thickness to chord ratio
                  k : [  -.13    -.20    -.02    -.11  ] form factor
(\frac{S}{S_{wet}}) : [  -.13    -.20    -.02    -.11  ] wetted area ratio
             (CDA0) : [  -.02    -.05    -.04    -.09  ] fuselage drag area
     W_{W_{coeff2}} : [  -.01    0.00    +.04    +.05  ] Wing Weight Coefficent 2

Simple Beam

In this example we consider a beam subjected to a uniformly distributed transverse force along its length. The beam has fixed geometry so we are not optimizing its shape, rather we are simply solving a discretization of the Euler-Bernoulli beam bending equations using GP.

"""
A simple beam example with fixed geometry. Solves the discretized
Euler-Bernoulli beam equations for a constant distributed load
"""
import numpy as np
from gpkit import Variable, VectorVariable, Model, ureg
from gpkit.small_scripts import mag

eps = 2e-4   # has to be quite small for consistent cvxopt printouts;
             # normally you'd set this to something more like 1e-20


class Beam(Model):
    """Discretization of the Euler beam equations for a distributed load.

    Arguments
    ---------
    N : int
        Number of finite elements that compose the beam.
    L : float
        [m] Length of beam.
    EI : float
        [N m^2] Elastic modulus times cross-section's area moment of inertia.
    q : float or N-vector of floats
        [N/m] Loading density: can be specified as constants or as an array.

    Upper Unbounded
    ---------------
    w_tip
    """
    def setup(self, N=4):
        EI = Variable("EI", 1e4, "N*m^2")
        dx = Variable("dx", "m", "Length of an element")
        L = Variable("L", 5, "m", "Overall beam length")
        q = VectorVariable(N, "q", 100*np.ones(N), "N/m",
                           "Distributed load at each point")
        V = VectorVariable(N, "V", "N", "Internal shear")
        V_tip = Variable("V_{tip}", eps, "N", "Tip loading")
        M = VectorVariable(N, "M", "N*m", "Internal moment")
        M_tip = Variable("M_{tip}", eps, "N*m", "Tip moment")
        th = VectorVariable(N, "\\theta", "-", "Slope")
        th_base = Variable("\\theta_{base}", eps, "-", "Base angle")
        w = VectorVariable(N, "w", "m", "Displacement")
        w_base = Variable("w_{base}", eps, "m", "Base deflection")
        # below: trapezoidal integration to form a piecewise-linear
        #        approximation of loading, shear, and so on
        # shear and moment increase from tip to base (left > right)
        shear_eq = (V >= V.right + 0.5*dx*(q + q.right))
        shear_eq[-1] = (V[-1] >= V_tip)  # tip boundary condition
        moment_eq = (M >= M.right + 0.5*dx*(V + V.right))
        moment_eq[-1] = (M[-1] >= M_tip)
        # slope and displacement increase from base to tip (right > left)
        theta_eq = (th >= th.left + 0.5*dx*(M + M.left)/EI)
        theta_eq[0] = (th[0] >= th_base)  # base boundary condition
        displ_eq = (w >= w.left + 0.5*dx*(th + th.left))
        displ_eq[0] = (w[0] >= w_base)
        # minimize tip displacement (the last w)
        self.cost = self.w_tip = w[-1]
        return [shear_eq, moment_eq, theta_eq, displ_eq,
                L == (N-1)*dx]


b = Beam(N=6, substitutions={"L": 6, "EI": 1.1e4, "q": 110*np.ones(6)})
sol = b.solve(verbosity=0)
print sol.summary(maxcolumns=6)
w_gp = sol("w")  # deflection along beam

L, EI, q = sol("L"), sol("EI"), sol("q")
x = np.linspace(0, mag(L), len(q))*ureg.m  # position along beam
q = q[0]  # assume uniform loading for the check below
w_exact = q/(24.*EI) * x**2 * (x**2 - 4*L*x + 6*L**2)  # analytic soln

assert max(abs(w_gp - w_exact)) <= 1.1*ureg.cm

PLOT = False
if PLOT:
    import matplotlib.pyplot as plt
    x_exact = np.linspace(0, L, 1000)
    w_exact = q/(24.*EI) * x_exact**2 * (x_exact**2 - 4*L*x_exact + 6*L**2)
    plt.plot(x, w_gp, color='red', linestyle='solid', marker='^',
             markersize=8)
    plt.plot(x_exact, w_exact, color='blue', linestyle='dashed')
    plt.xlabel('x [m]')
    plt.ylabel('Deflection [m]')
    plt.axis('equal')
    plt.legend(['GP solution', 'Analytical solution'])
    plt.show()

The output is


Cost
----
 1.621 [m]

Free Variables
--------------
    dx : 1.2                                                             [m]   Length of an element
     M : [ 1.98e+03  1.27e+03  713       317       79.2      0.0002   ]  [N*m] Internal moment
     V : [ 660       528       396       264       132       0.0002   ]  [N]   Internal shear
\theta : [ 0.0002    0.177     0.285     0.341     0.363     0.367    ]        Slope
     w : [ 0.0002    0.107     0.384     0.76      1.18      1.62     ]  [m]   Displacement

Most Sensitive
--------------
 L : +4                                                             Overall beam length
EI : -1
 q : [ +0.0072   +0.042    +0.12     +0.23     +0.37     +0.22    ] Distributed load at each point

Tightest Constraints
--------------------
+5.5e+02 : L = 5*dx
      +1 : w_(5,) >= 0.5*\theta_(4,)*dx + 0.5*\theta_(5,)*dx + w_(4,)
   +0.74 : \theta_(2,) >= 0.5*EI**-1*M_(1,)*dx + 0.5*EI**-1*M_(2,)*dx + \theta_(1,)
   +0.73 : w_(4,) >= 0.5*\theta_(3,)*dx + 0.5*\theta_(4,)*dx + w_(3,)
   +0.64 : M_(1,) >= 0.5*V_(1,)*dx + 0.5*V_(2,)*dx + M_(2,)

By plotting the deflection, we can see that the agreement between the analytical solution and the GP solution is good.

_images/beam.svg